【题目】已知:在Rt△ABC中,AB=BC;在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,
求证:BM=DM且BM⊥DM;
(2)如果将图①中的△ADE绕点A逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.
图① 图②
【答案】(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立
【解析】分析:(1)、根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)、连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC =90°.
详解:(1)在Rt△EBC中,M是斜边EC的中点,∴.
在Rt△EDC中,M是斜边EC的中点,∴.
∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.
∴∠BMD=2∠ACB=90°,即BM⊥DM.
(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.
证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.
∵ DM=MF,EM=MC, ∴ 四边形CDEF为平行四边形,∴ DE∥CF ,ED =CF,
∵ ED= AD,∴ AD=CF, ∵ DE∥CF,∴ ∠AHE=∠ACF.
∵,,
∴ ∠BAD=∠BCF, 又∵AB= BC, ∴ △ABD≌△CBF,∴ BD=BF,∠ABD=∠CBF,
∵ ∠ABD+∠DBC =∠CBF+∠DBC,∴∠DBF=∠ABC =90°.
在Rt△中,由, ,得BM=DM且BM⊥DM.
科目:初中数学 来源: 题型:
【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.
(1)求BD的长;
(2)若△DCN的面积为2,求四边形ABNM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知 m≥2,n≥2,且 m、n 均为正整数,如果将 mn 进行如图所示的“分解”,那么下列四个叙述中正确的有( )
①在 25 的“分解”结果是 15和17两个数.
②在 42 的“分解”结果中最大的数是9.
③若 m3 的“分解”结果中最小的数是 23,则 m=5.
④若 3n 的“分解”结果中最小的数是 79,则 n=5.
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC放置在第一象限内,顶点A在x轴上,若顶点B的坐标是(4,3),(1)请求出菱形边长OA的长度.
(2)反比例函数经过点C,请求出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值,
(1)2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.
(2)已知a+b=4,ab=﹣2,求代数式(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD.(S表示面积)
实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.
如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+.
如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与之间的数量关系,并说明理由.
迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题:
如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点A(﹣2,0),点B(0,﹣4),AD与y轴交于点E,且E为AD的中点,双曲线y= 经过C,D两点且D(a,8)、C(4,b).
(1)求a、b、k的值;
(2)如图2,点P在双曲线y= 上,点Q在x轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试直接写出满足要求的所有点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com