【题目】已知抛物y=ax2+bx+c(b<0)与轴只有一个公共点.
(1)若公共点坐标为(2,0),求a、c满足的关系式;
(2)设A为抛物线上的一定点,直线l:y=kx+1-k与抛物线交于点B、C两点,直线BD垂直于直线y=-1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
①求点A的坐标和抛物线的解析式;
②证明:对于每个给定的实数k,都有A、D、C三点共线.
【答案】(1) y=a(x-2)2, c=4a;(2) ①顶点A(1,0),y= x2-2x+1,②见解析.
【解析】
(1)根据抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;
(2)①y=kx+1k=k(x1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.
解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x2)2,则c=4a;
(2) y=kx+1-k= k(x-1)+1过定点(1,1),
且当k=0时,直线l变为y=1平行x轴,与y轴的交点为(0,1)
又△ABC为等腰直角三角形,∴点A为抛物线的顶点
①c=1,顶点A(1,0)
抛物线的解析式: y= x2-2x+1.
②
x2-(2+k)x+k=0,
x=(2+k±)
xD=xB=(2+k-), yD=-1;
则D
yC=(2+k2+k,
C,A(1,0)
∴直线AD表达式中的k值为:k AD==,
直线AC表达式中的k值为:k AC=
∴k AD= k AC, 点A、C、D三点共线.
科目:初中数学 来源: 题型:
【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)已知△ABC的两边AB、AC的长恰好是关于x的方程x2+(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5
(1) 求证:AB≠AC
(2) 如果△ABC是以BC为斜边的直角三角形,求k的值
(3) 填空:当k=________时,△ABC是等腰三角形,△ABC的周长为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).
(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;
(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;
(3)连接AB2、BB2,求△ABB2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售一种玩具,每件的进货价为40元.经市场调研,当该玩具每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件,现该商店决定涨价销售.
(1)当每件的销售价为53元,该玩具每天的销售数量为 件;
(2)若商店销售该玩具每天获利2000元,每件玩具销售价应定为多少元?
(3)若该玩具每件销售价不低于57元,同时,每天的销售量至少20件,求每件的销售价定为多少元时,销售该玩具每天获得的利润w最大?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA,PB于点C、D,若△PCD的周长为24,⊙O的半径是5,则点P到圆心O的距离_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com