精英家教网 > 初中数学 > 题目详情

【题目】解方程:

1x274x

2x22x

3x26x+9=(52x2

【答案】1x12+x22;(2x10x22;(3x1x2

【解析】

(1)利用配方法求解即可;

(2)利用因式分解法求解即可;

(3)利用因式分解法求解即可.

解:(1)x274x

x24x7

x24x+47+4,即(x2211

x2

x12+x22

(2)x22x

x22x0

xx2)=0

x10x22

(3)x26x+9=(52x2

x32﹣(2x520

x3+2x5)(x32x+5)=0

3x80或﹣x+20

解得:x1x2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+ca≠0)的对称轴为直线x=﹣1,且抛物线经过A10),C03)两点,与x轴交于点B

1)若直线ymx+n经过BC两点,求直线BC和抛物线的解析式;

2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:

3)在抛物线上存在点P(不与C重合),使得APB的面积与ACB的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBC,点EAB上,DEC90°

1)求证:ADE∽△BEC

2)若AD1BC3AE2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MN是⊙O的直径,点Q在⊙O上,将劣弧沿弦MQ翻折交MN于点P,连接PQ,若∠PMQ16°,则∠PQM的度数为(  )

A.32°B.48°C.58°D.74°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知ABO的直径,ACO的弦,过O点作OFABO于点D,交AC于点E,交BC的延长线于点F,点GEF的中点,连接CG

(1)判断CGO的位置关系,并说明理由;

(2)求证:2OB2BCBF

(3)如图2,当∠DCE2FCE3DG2.5时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,抛物线y=x2+bx+c过点A30),B10),交y轴于点C,点P是该抛物线上一动点,点PC点沿抛物线向A点运动(点P不与点A重合),过点PPDy轴交直线AC于点D

1)求抛物线的解析式;

2)求点P在运动的过程中线段PD长度的最大值;

3APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;

4)在抛物线对称轴上是否存在点M使|MAMC|最大?若存在请求出点M的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+mx+nx轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A10),C02).

1)求抛物线的表达式;

2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

3)点E时线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC是等边三角形,点DE分别在BCAC上,且CEBDBEAD相交于点F.求证:

(1)ABD≌△BCE

(2)AEF∽△ABE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物y=ax2+bx+c(b<0)与轴只有一个公共点.

(1)若公共点坐标为(20),求ac满足的关系式;

(2)A为抛物线上的一定点,直线ly=kx+1k与抛物线交于点BC两点,直线BD垂直于直线y=1,垂足为点D.k0时,直线l与抛物线的一个交点在y轴上,且ABC为等腰直角三角形.

①求点A的坐标和抛物线的解析式;

②证明:对于每个给定的实数k,都有ADC三点共线.

查看答案和解析>>

同步练习册答案