精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料并填空在体育比赛中我们常常会遇到计算比赛场次的问题,这时我们可以借助数线段的方法来计算.比如在一个小组中有 4 个队进行单循环比赛我们要计算总的比赛场次我们就 设这四个队分别为 A、B、C、D,并把它们标在同一条线段上如下图:

因为单循环比赛就是每两个队之间都要比赛一场这就相当于在上述图形中四个点连接线段按一定规律得到的线段有:

AB,AC,AD…………3

BC,BD………………2

CD……………………1

总的线段条数是 3+2+1=6

所以可知 4 个队进行单循环比赛共比赛六场.

(1).类比上述想法若一个小组有 6 个队进行单循环比赛则总的比赛场次是_____

(2).类比上述想法若一个小组有 n 个队进行单循环比赛则总的比赛场次是_____

(3).我们知道 2006 年世界杯共有 32 支代表队参加比赛,共分成 8 个小组每组 4 代表队.第一阶段每个小组进行单循环比赛.则第一阶段共 _______ 场比赛.

(4).若分成 m 个小组每个小组有 n 个队第一阶段每个小组进行单循环比赛.则第 一阶段共需要进行_____________场比赛.

【答案】1548× m

【解析】

依题意可得:若一个小组有 n 个队,进行单循环比赛,则总的比赛场次是1 + 2 + 3 ++(n - 1)=;若分成 m 个小组,每个小组有 n 个队,第一阶段每个小组进行单循环比赛.则第 一阶段共需要进行× m.场比赛.

(1). 1+2+3+4+5=15; (2). 1 + 2 + 3 ++(n - 1)=;(3) × 8=48; (4). × m.

故答案为:15,,× m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,ABCD中,若AB=1,BC=2,则ABCD1阶准菱形.

(1)判断与推理:

①邻边长分别为23的平行四边形是 阶准菱形

②小明为了剪去一个菱形,进行如下操作:如图2,把ABCD沿BE折叠(点EAD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABEF是菱形.

(2)操作、探究与计算:

①已知ABCD是邻边长分别为1,a(a>1),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;

②已知ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r(r>0),则ABCD

阶准菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以RtABC的斜边BC为一边作正方形BCDE设正方形的中心为O,连结AO,如果AB=3,AO,那么AC的长等于__________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1

(1)在图中画出△A1B1C1

(2)点A1,B1,C1的坐标分别为         

(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有理数ab在数轴上的对应点如图所示.

(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;

(2)已知有理数ab,计算|a+b|–|a|–|1–b|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.

我选择第 个方程。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD中,AD=2AB,FBC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③SABF≤SAEF;④∠BFE=3∠CEF.中一定成立的是(  )

A. ①②④ B. ①③ C. ②③④ D. ①②③④

查看答案和解析>>

同步练习册答案