精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形OABC的边长为6,点AC分别在x轴,y轴的正半轴上,点D20)在OA上,POB上一动点,则PA+PD的最小值为__

【答案】

【解析】

过D点作关于OB的对称点D′,连接D′A交OB于点P,由两点之间线段最短可知D′A即为PA+PD的最小值,
由正方形的性质可求出D′点的坐标,再根据OA=6可求出A点的坐标,利用两点间的距离公式即可求出D′A的值.

解:过D点作关于OB的对称点D′,连接D′A交OB于点P,由两点之间线段最短可知D′A即为PA+PD的最小值,


∵D(2,0),四边形OABC是正方形,
∴D′点的坐标为(0,2),A点坐标为(6,0),
∴D′A=,即PA+PD的最小值为2
故答案为:2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】目前微信”、“支付宝”、“共享单车网购给我们的生活带来了很多便利,初二数学小组在校内对你最认可的四大新生事物进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.

(1)根据图中信息求出m=   ,n=   

(2)请你帮助他们将这两个统计图补全;

(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可微信这一新生事物?

(4)已知A、B两位同学都最认可微信”,C同学最认可支付宝”D同学最认可网购从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=CBAD=CD,对角线ACBD相交于点OOEABOFCB,垂足分别是EF.求证:OE=OF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为66万元;本周已售出2辆A型车和1辆B型车,销售额为42万元.

(1)求每辆A型车和B型车的售价各为多少元.

(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不超过84万元.问最多可以购买多少辆B型号的新能源汽车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上 ABC 三个点对应的数分别为 abx,且 AB 到-2 所对应的点的距离都等于 6,点 B在点 A 的右侧.

1)请在数轴上表示点 AB 位置,a= b=

2)请用含 x 的代数式表示 CB=

3)若点 C 在点 B 的左侧,且 CB=8,点 A 以每秒 2 个单位长度的速度沿数轴向右运动,当 AC=2AB时,求点 A 移动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将沿过点的直线折叠,使点落到边上的处,折痕交边于点,连接.

1)求证:四边形是平行四边形;

2)若平分,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【题目】如图①,一次函数 y x - 2 的图像交 x 轴于点 A,交 y 轴于点 B,二次函数 y x2 bx c的图像经过 AB 两点,与 x 轴交于另一点 C

(1)求二次函数的关系式及点 C 的坐标;

(2)如图②,若点 P 是直线 AB 上方的抛物线上一点,过点 P PDx 轴交 AB 于点 DPEy 轴交 AB 于点 E,求 PDPE 的最大值;

(3)如图③,若点 M 在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点 M的坐标.

① ②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是个三角形,分别连接这个三角形三边中点得到图2,再分别连接图2中间小三角形三边的中点得到图3

1中有_ __个三角形,图2中有 __个三角形,图3 中有 __个三角形;

按上面的方法继续下去,第个图形有________个三角形;(用含的式子表示)

时,图形中有多少个三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车厂一周计划生产辆,自行车厂平均每天生产自行车辆,由于各种原因实际每天生产量与计划每天生产量相比有出入,下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆)

星期

增将

根据记录可知前三天共生产自行车 辆;

产量最多的一天比产量最少的一天多生产 辆;

若该厂实行按生产的自行车数量的多少计工资(即计件工资制).如果每生产一辆自行车可得人民币元,那么该厂工人这一周的工资总额是多少元.

查看答案和解析>>

同步练习册答案