【题目】如图,已知矩形ABCD,AB=6,AD=10,请用直尺和圆规按下列步骤作图(不要求写作法,但要保留作图痕迹);
(1)在BC边上作出点E,使得cosBAE.
(2)在(1)作出的图形中
①在CD上作出一点F,使得点D、E关于AF对称;
②四边形AEFD的面积=____________.
【答案】(1)详见解析;(2)①详见解析;②
【解析】
(1)以A为圆心,AD为半径作弧,与AB交于点E,点E即为所求;
(2)①作∠DAE的平分线交CD 于F,点F即为所求;
②在Rt△ABE中,AB=6,AE=10,推出BE= =8,EC=2,设DF=EF=x,则CF=6-x,在R△EFC中,根据EF2=EC2+CF2,构建方程求出x即可解决问题;
解:(1)以A为圆心,AD为半径作弧,与AB交于点E,点E即为所求;
(2)①作∠DAE的平分线交CD 于F,点F即为所求;
②在Rt△ABE中,AB=6,AE=10,
∴BE==8,
∴EC=2,
设DF=EF=x,则CF=6-x,
在R△EFC中,∵EF2=EC2+CF2,
∴x2=22+(6-x)2,
解得x=,
∴S四边形AEFD=2××AD×DF=,
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,轴交于点,抛物线经过,两点,与轴的另一交点为.
(1)求抛物线的解析式;
(2)为抛物线上一点,直线与轴交于点,当时,求点的坐标;
(3)在直线下方的抛物线上是否存在点,使得,如果存在这样的点,请求出点的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:
(1)求本次比赛参赛选手总人数,并补全频数直方图;
(2)求扇形统计图中扇形D的圆心角度数;
(3)成绩在D区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=3,AB=4,则四边形AEDF的周长为( )
A.8B.9C.10D.11
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】车间有20名工人,某天他们生产的零件个数统计如下表.
车间20名工人某一天生产的零件个数统计表
生产零件的个数(个) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人数(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求这一天20名工人生产零件的平均个数;
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 ,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点 A 顺时针方向旋转 60°得到△A′B′C′的位置,连接 C′B,则 C′B 的长为 ( )
A.2-B.C.D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com