精英家教网 > 初中数学 > 题目详情
16.如图,抛物线与x轴交于点A(-$\frac{1}{3}$,0),点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的解析式;
(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(-$\frac{1}{3}<t<2$),求△ABN的面积s与t的函数解析式;
(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.

分析 (1)可设抛物线的解析式为y=ax2+bx+c,然后只需运用待定系数法就可解决问题;
(2)当-$\frac{1}{3}$<t<2时,点N在x轴的上方,则NP等于点N的纵坐标,只需求出AB,就可得到S与t的函数关系式;
(3)根据相似三角形的性质可得PN=2PO.由于PO=|t|,根据0<t<2,由PN=2PO得到关于t的方程,解这个方程,就可解决问题.

解答 解:(1)设抛物线的解析式为y=ax2+bx+c,由题意可得:$\left\{\begin{array}{l}{\frac{1}{9}a-\frac{1}{3}b+c=0}\\{4a+2b+c=0}\\{c=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=\frac{5}{2}}\\{c=1}\end{array}\right.$.
∴抛物线的函数关系式为y=-$\frac{3}{2}$x2+$\frac{5}{2}$x+1;

(2)当-$\frac{1}{3}$<t<2时,yN>0,
∴NP=|yN|=yN=-$\frac{3}{2}$t2+$\frac{5}{2}$t+1,
∴S=$\frac{1}{2}$AB•PN
=$\frac{1}{2}$×(2+$\frac{1}{3}$)×(-$\frac{3}{2}$t2+$\frac{5}{2}$t+1)
=$\frac{7}{6}$(-$\frac{3}{2}$t2+$\frac{5}{2}$t+1)
=-$\frac{7}{4}$t2+$\frac{35}{12}$t+$\frac{7}{6}$;

(3)∵△OPN∽△COB,
∴$\frac{PO}{OC}$=$\frac{PN}{OB}$,
∴$\frac{PO}{1}$=$\frac{PN}{2}$,
∴PN=2PO.
当0<t<2时,PN=|yN|=yN=-$\frac{3}{2}$t2+$\frac{5}{2}$t+1,PO=|t|=t,
∴-$\frac{3}{2}$t2+$\frac{5}{2}$t+1=2t,
整理得:3t2-t-2=0,
解得:t3=-$\frac{2}{3}$,t4=1.
∵-$\frac{2}{3}$<0,0<1<2,
∴t=1,此时点N的坐标为(1,2).
故点N的坐标为(1,2).

点评 本题主要考查了二次函数综合题,解题的关键是熟悉待定系数法求二次函数的解析式、相似三角形的性质、解一元二次方程等知识,需要注意的是:用点的坐标表示相关线段的长度时,应先用坐标的绝对值表示线段的长度,然后根据坐标的正负去绝对值;解方程后要检验,不符合条件的解要舍去.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,已知P(2,2),点B、A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知.如图,在正方形(四边相等,四个内角都为90°)ABCD中,过顶点D作射线交AB于E,过点B作BF⊥DE,F为垂足,联结AF,过点A作AG⊥AF交DE于G.求证:∠AGD=135°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.图1、图2分别是8×8的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:
(1)在图1中画一个以线段AB为一边的正方形,并求出此正方形的面积;(所画正方形各顶点必须在小正方形的顶点上)
(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形各顶点必须在小正方形的顶点上,且所画等腰三角形的面积为$\frac{7}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.学习相似三角形和解直角三角形的相关内容后,张老师请同学们交流这样的一个问题:“如图,在正方形网格上有△A1B1C1和△A2B2C2,这两个三角形是否相似?”.那么你认为△A1B1C1和△A2B2C2相似.(填相似或不相似);理由是$\frac{{A}_{1}{B}_{1}}{{A}_{2}{B}_{2}}$=$\frac{{B}_{1}{C}_{1}}{{B}_{2}{C}_{2}}$=$\frac{{A}_{1}{C}_{1}}{{A}_{2}{C}_{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.画一画(不写画法,保留作图痕迹).
(1)已知:如图1,线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.
(2)如图2,将矩形MNPQ以Q为位似中心相似比为0.5进行位似变换,画出变换后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,已知矩形ABCD的宽AD=8,点E在边AB上,P为线段DE上一动点(点P与点D、E不重合),∠MPN=90°,M、N分别在直线AB、CD上,过点P作直线HK∥AB,作PF⊥AB,垂足为点F,过点N作NG⊥HK,垂足为点G.
(1)求证:∠MPF=∠GPN;
(2)在图1中,将直角∠MPN绕点P顺时针旋转,在这一过程中,试观察,猜想:当MF=NG时,△MPN是什么特殊三角形?在图2中用直尺画出图形,并证明你的猜想;
(3)在(2)的条件下,当∠EDC=30°时,设EP=x,△MPN的面积为S,求出S关于x的解析式,并说明S是否存在最小值?若存在,求出此时x的值和△MPN面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)解方程:$\frac{x}{x-2}+\frac{2}{{{x^2}-4}}=1$
(2)解不等式:1-$\frac{3x+1}{5}$≤$\frac{x-1}{2}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:$(1+\frac{1}{x-2})÷\frac{x-1}{{{x^2}-4x+4}}$,选择一个你喜欢的数代入求值.

查看答案和解析>>

同步练习册答案