【题目】如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有( )个是正确的。
①∠DAF=45° ②△ABE≌△ACD ③AD平分∠EDF ④
A. 4B. 3C. 2D. 1
【答案】B
【解析】
①根据旋转的性质可得出∠BAE=∠CAF,由∠BAC=90°、∠DAE=45°可得出∠CAD+∠CAF=45°,即可判断①;②根据旋转的性质可得出△BAE≌△CAF,不能推出△BAE≌△CAD,即可判断②;③根据∠DAE=∠DAF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED≌△AFD,推出DE=DF,求出∠DCF=90°,根据勾股定理推出即可.
∵在Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
①由旋转,可知:∠CAF=∠BAE,
∵∠BAD=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°,
∴∠CAF+∠BAE=∠DAF=45°,故①正确;
②由旋转,可知:△ABE≌△ACF,不能推出△ABE≌△ACD,故②错误;
③∵∠EAD=∠DAF=45°,
∴AD平分∠EAF,故③正确;
④由旋转可知:AE=AF,∠ACF=∠B=45°,
∵∠ACB=45°,
∴∠DCF=90°,
由勾股定理得:CF2+CD2=DF2,
即BE2+DC2=DF2,
在△AED和△AFD中,
,
∴△AED≌△AFD(SAS),
∴DE=DF,
∴BE2+DC2=DE2,故④正确.
故选B.
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD中,E,F是对角线BD上的两点, 如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数y=位于第一象限的图象上,则k的值为( )
A.9
B.9
C.3
D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图像回答下列问题:
(1)小华在体育馆锻炼了_____分钟;
(2)体育馆离文具店______千米;
(3)小华从家跑步到体育馆,从文具店散步回家的速度分别是多少千米/分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )
A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com