精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,求∠B的度数.
分析:根据等腰三角形的性质推出∠B=∠C,∠B=∠BAD,∠CAD=∠ADC,根据三角形的外角性质推出∠ADC=∠DAC=2∠B,设∠B=x°,则∠C=x°,∠BAC=3x°,根据三角形的内角和定理推出∠B+∠C+∠BAC=180°,代入求出即可.
解答:解:∵AB=AC,
∴∠B=∠C,
∵BD=AD,
∴∠B=∠BAD,
则∠ADC=∠B+∠BAD=2∠B,
∵DC=AC,
∴∠ADC=∠DAC=2∠B,
设∠B=x°,则∠C=∠BAD=x°,∠BAC=∠BAD+∠CAD=x°+2x°=3x°,
在△ABC中,∠B+∠BAC+∠C=180°,
则x+x+3x=180,
∴x=36,
即∠B=36°.
点评:本题综合运用了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点,综合运用这些性质进行推理是解此题的关键,此题是一道比较典型的题目,并且难度适中,通过做此题培养了学生分析问题和解决问题的能力,用了方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案