如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点, DF
AC于F.
(1)求证:DF为⊙O的切线;
(2)若
,CF=9,求AE的长.
![]()
(1)证明见解析;(2)7.
【解析】
试题分析:(1)连接OD,AD,求出OD∥AC,推出OD⊥DF,根据切线的判定推出即可.
(2)求出CD、DF,推出四边形DMEF和四边形OMEN是矩形,推出OM=EN,EM=DF=12,求出OM,即可求出答案.
试题解析:(1)连接OD,AD,
∵AB是⊙的直径,∴∠ADB=90°.
又∵AB=AC,∴BD=CD.
又∵OB=OA,∴OD∥AC.
∵DF⊥AC,∴OD⊥DF.
又∵OD为⊙的半径,∴DF为⊙O的切线.
![]()
(2)连接BE交OD于M,过O作ON⊥AE于N,则AE=2NE,
∵
,CF=9,∴DC=15.∴
.
∵AB是直径,∴∠AEB=∠CEB=90°.
∵DF⊥AC,OD⊥DF,∴∠DFE=∠FEM=∠MDF=90°.∴四边形DMEF是矩形.
∴EM=DF=12,∠DME=90°,DM=EF.即OD⊥BE.
同理四边形OMEN是矩形,∴OM=EN.
∵OD为半径,∴BE=2EM=24.
∵∠BEA=∠DFC=90°,∠C=∠C,∴△CFD∽△CEB.
∴
,即
.
∴EF=9=DM.
设⊙O的半径为R,
则在Rt△EMO中,由勾股定理得:
,解得:
.
则EN=OM=
.
∴AE=2EN=7.
![]()
考点:1.垂径定理;2.勾股定理;3.矩形的性质和判定;4.切线的判定;5.平行线的性质的应用.
科目:初中数学 来源:2013-2014学年北京市通州区中考二模数学试卷(解析版) 题型:解答题
如图,一次函数
的图象与x轴交于点A,与y轴交于点B,与反比例函数
的图象在第一象限内交于点C,CD⊥x轴于点D,OD=2AO,求反比例函数
的表达式.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市燕山区中考一模数学试卷(解析版) 题型:解答题
定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:
的图象向左平移2个单位,再向下平移1个单位得到
的图象,则
是y与x的“反比例平移函数”.
(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.
(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”
的图象经过B、E两点.则这个“反比例平移函数”的表达式为 ;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.
(3)在(2)的条件下,已知过线段BE中点的一条直线l交这个“反比例平移函数”图象于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市燕山区中考一模数学试卷(解析版) 题型:选择题
如图,点C在线段AB上,AB=8,AC=2,P为线段CB上一动点,点A绕点C旋转后与点B绕点P旋转后重合于点D. 设CP=x,
CPD 的面积为y. 则下列图象中,能表示y与x的函数关系的图象大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市海淀区中考一模数学试卷(解析版) 题型:解答题
如图,在△ABC中,∠ACB=90º, D是AC上的一点,且AD=BC,DE
AC于D, ∠EAB=90º.
求证:AB=AE.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市朝阳区中考一模数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0), B(9,0),直线y=kx+b经过B、D两点.
(1)求直线y=kx+b的表达式;
(2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com