精英家教网 > 初中数学 > 题目详情

【题目】1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM60°.

1)求点M到地面的距离;

2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:1.73,结果精确到0.01米)

【答案】13.9米;(2)货车能安全通过.

【解析】

(1)MMNABN,交BA的延长线于N,在RtOMN中,求出ON的长,即可求得BN的长,即可求得点M到地面的距离;

(2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH的长即可,与3.5作比较,可得结论.

(1)如图,过MMNABN,交BA的延长线于N

RtOMN中,∠NOM=60°,OM1.2,∴∠M=30°,

ONOM0.6

NBON+OB3.3+0.63.9

即点M到地面的距离是3.9米;

(2)CE0.65EH2.55,∴HB3.92.550.650.7

HGHBC,交OMG,过OOPGHP

∵∠GOP=30°,∴tan30°

GPOP0.404

GH3.3+0.404=3.704≈3.70>3.5

∴货车能安全通过.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是(  )

A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,设移动的时间为ts.

(1)如果P、Q分别从A、B同时出发,若t=3s,求四边形APQC的面积.

(2)如果P、Q分别从A、B同时出发,当△PBQ的面积等于8cm2时,求t的值.

(3)若△ABC与△BPQ相似,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点Cx轴的垂线交直线AB于点E,交该二次函数图象于点D

1)求a的值和直线AB的解析式;

2)过点DDFAB于点F,设ACEDEF的面积分别为S1S2,若S1=4S2,求m的值;

3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且周长取最大值时,求点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店以每件20元的价格购进一批商品,如果以每件30元销售,那么半月内可售出400件.根据销售经验,销售单价每提高1元,半月内的销售量相应减少20件.如何提高销售单价,才能在半月内获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.

(1)求证:PC是⊙O的切线.

(2)求tan∠CAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)x(单位:cm)的变化而变化.

1)请直接写出Sx之间的函数关系式(不要求写出自变量x的取值范围)

2)当x是多少时,这个三角形面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

同步练习册答案