【题目】如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=______°.
【答案】40
【解析】根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系.
解:如图所示
∵BO和CO分别是∠ABC和∠ACB的角平分线
∴∠1=∠ABC,∠2=∠ACB,
∴∠1+∠2=(∠ABC+∠ACB)
又∵∠ABC+∠ACB=180°-∠A
∴∠1+∠2=(180°-∠A)=90°-∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)
=90°+∠A.
∵∠BOC=110°,则∠A=40°.
故答案是:40°.
“点睛”本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求证:PC=PE; (2)求∠CPE的度数;
拓展探究
(3)如图2,把“正方形ABCD”改为“菱形ABCD”,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A. 2100026x800xB. 100013x800xC. 100026x2800xD. 100026x800x
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.
(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.
(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.
(3)在(2)的条件下,已知AB=3,OB:BP=3:1,求四边形AOCP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在△ABC中,E,M,N分别是AB,AC,BC的中点,CF∥AB,连接MN,连接并延长EM,与直线CF交于F,连接FN交直线AB于点D,交AC于O点.
(1)如图(1),BA=BC,求证:四边形FMNC为菱形;
(2)如图(2),连接MB,NE,在不添加任何辅助线的情况下,请直接写出图(2)中的所有平行四边形(BE为边的除外).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C[]为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP.设点P的运动时间为秒.
①若△NPH的面积为1,求的值;
②点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有( )
A.1组 B.2组 C.3组 D.4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.
(1)求a,b的值;
(2)连结OM,求∠AOM的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com