【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求证:PC=PE; (2)求∠CPE的度数;
拓展探究
(3)如图2,把“正方形ABCD”改为“菱形ABCD”,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】(1)、证明过程见解析;(2)、90°;(2)、AP=CE,证明过程见解析.
【解析】
试题分析:(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,然后根据180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E得出答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
试题解析:(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS), ∴PA=PC,∠BAP=∠BCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
∵∠CFP=∠EFD(对顶角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等边三角形,∴PC=CE,∴AP=CE
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为( )
A.y=x2﹣2x+2
B.y=x2﹣2x﹣2
C.y=﹣x2﹣2x+1
D.y=x2﹣2x+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,适合采用普查方式进行的是 ( )
A. 对泰兴市居民日平均用水量的调查
B. 对浙江卫视 “王牌对王牌”栏目收视率的调查
C. 对泰兴市中小学生玩网游情况的调查
D. 对洋思中学教师的身体健康状况的调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,边BC的垂直平分线EF分别交AD、BC于点M、E,交BA的延长线于点F,若点A是BF的中点,AB=5,ABCD的周长为34,则FM的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP.设点P的运动时间为t秒.
① 若△NPH的面积为1,求t的值;
② 点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列判断不正确的是( ).
A.形状相同的图形是全等图形
B.能够完全重合的两个三角形全等
C.全等图形的形状和大小都相同
D.全等三角形的对应角相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com