【题目】阅读下列材料,然后回答问题。
在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:
(一) ==
(二) =
(三) = = 以上这种化简的步骤叫做分母有理化。
还可以用以下方法化简:
(四) =
请用不同的方法化简。
(1)参照(三)式得=_____________________________________;
参照(四)式得=_____________________________________。
(2)化简:
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在线段AC上,连接AD, BE的延长线交AD于F.
(1)猜想线段BE、AD的数量关系和位置关系:_______________(不必证明);
(2)当点E为△ABC内部一点时,使点D和点E分别在AC的两侧,其它条件不变.
①请你在图2中补全图形;
②(1)中结论成立吗?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OABC的顶点A的坐标为(6,0),顶点B的纵坐标为5.点D是x轴正半轴上一点(不与点A重合),点D的坐标为(x,0),△ODC与△DAB的面积分别记为S1、S2,设S=S1﹣S2.
(1)用含x的代数式表示线段AD的长.
(2)求S与x之的函数关系式.
(3)当S与△DBC的面积相等时,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3,DF=1,求四边形DBEC面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC,垂足为E,交弧BC于点D,连接DC,则∠DCB的度数为( )
A. 30° B. 45° C. 50° D. 60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.
(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;
(3)连结CE,写出AE, BE, CE之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
如图,把沿直线平行移动线段的长度,可以变到的位置;
如图,以为轴,把翻折,可以变到的位置;
如图,以点为中心,把旋转,可以变到的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在图中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使变到的位置;
②指图中线段与之间的关系,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2,B2,C2,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com