【题目】如图,AC是ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD的延长线于点G.
(1)若∠ABF=∠ACF,求证:CE2=EFEG;
(2)若DG=DC,BE=6,求EF的长.
【答案】(1)证明见解析;(2)3.
【解析】
(1)依据等量代换得到∠ECF=∠G,依据∠CEF=∠CEG,可得△ECF∽△EGC,进而得出,即CE2=EFEG;
(2)依据AB=CD=DG,可得AB:CG=1:2,依据AB∥CG,即可得出EG=12,BG=18,再根据AB∥DG,可得,进而得到EF=BF-BE=9-6=3.
解:(1)∵AB∥CG,
∴∠ABF=∠G,
又∵∠ABF=∠ACF,
∴∠ECF=∠G,
又∵∠CEF=∠CEG,
∴△ECF∽△EGC,
∴,即CE2=EFEG;
(2)∵平行四边形ABCD中,AB=CD,
又∵DG=DC,
∴AB=CD=DG,
∴AB:CG=1:2,
∵AB∥CG,
∴,
即,
∴EG=12,BG=18,
∵AB∥DG,
∴,
∴BF=BG=9,
∴EF=BF﹣BE=9﹣6=3.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=mx2+(3–2m)x+m–2(m≠0)与x轴有两个不同的交点.
(1)求m的取值范围;
(2)判断点P(1,1)是否在抛物线上;
(3)当m=1时,求抛物线的顶点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
(1)求m、n的值;
(2)求直线AC的解析式.
(3)点P在双曲线上,且△POC的面积等于△ABC面积的,求点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直
线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则
y关于x的函数图象大致形状是【 】
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角标系xOy中,以O为位似中心,将边长为8的等边三角形OAB作n次位似变换,经第一次变换后得到等边三角形OA1B1,其边长OA1缩小为OA的,经第二次变换后得到等边三角形OA2B2,其边长OA2缩小为OA1的,经第三次变换后得到等边三角形OA3B3,其边长OA3缩小为OA2的,…按此规律,经第n次变换后,所得等边出角形OAnBn.的顶点An的坐标为(,0),则n的值是( )
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE、PF分别交AB、AC于点E、F.给出以下四个结论:
①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;
④EF=AP.上述结论正确的有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,是外一点,过点做的两条切线,切点分别为.若,则点叫做的切角点.
(1)如图②,的半径是1,点O到直线的距离为2.若点是的切角点,且点在直线上,请用尺规作出点;(保留作图痕迹,不写作法)
(2)如图③,在中,,,,是的内切圆.若点是的切角点,且点在的边上,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com