精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.

(1)求m、n的值;

(2)求直线AC的解析式.

(3)点P在双曲线上,且△POC的面积等于△ABC面积的,求点P的坐标。

【答案】(1)m=-2,n=-2(2)y=-x+1(3)(2,-1)或(-2,1)

【解析】

(1)由题意,根据对称性得到B的横坐标为1,确定出C的坐标,根据三角形AOC的面积求出A的纵坐标,确定出A坐标,将A坐标代入一次函数与反比例函数解析式,即可求出mn的值;
(2)设直线AC解析式为y=kx+b,将AC坐标代入求出kb的值,即可确定出直线AC的解析式.

(3)根据双曲线的对称性求得B(1,-2),求出三角形ABC的面积,设点P(a,),再根据SPOC=SABC列出关于a的方程即可。

(1)∵直线y=mx与双曲线y=相交于A(-1,a)、B两点,

B点横坐标为1,BCx轴,则C(1,0),

AOC的面积为1,

A(-1,2),

A(-1,2)代入y=mx,y=可得m=-2,n=-2;

(2)设直线AC的解析式为y=kx+b,

y=kx+b经过点A(-1,2)、C(1,0)

解得k=-1,b=1,

∴直线AC的解析式为y=-x+1;

(3)由对称性可得B(1,-2),

SABC==2,

设点P(a,),

SPOC=SABC

SPOC=

解得a=2-2,

∴点P的坐标为(2,-1)或(-2,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线 y=ax2﹣5ax+c x 轴于点 A,点 A 的坐标为(4,0).

(1)用含 a 的代数式表示 c

(2) a时,求 x 为何值时 y 取得最小值,并求出 y 的最小值.

(3) a时,求 0≤x≤6 y 的取值范围.

(4)已知点 B 的坐标为(0,3),当抛物线的顶点落在△AOB 外接圆内部时,直接写出 a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.

(1)根据信息填表

产品种类

每天工人数(人)

每天产量(件)

每件产品可获利润(元)

15

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明的书包里只放了A4大小的试卷共4张,其中语文2张、数学1张、英语1张.

若随机地从书包中抽出2张,求抽出的试卷中有英语试卷的概率为______

若随机地从书包中抽出3张,抽出的试卷中有英语试卷的概率为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于函数(k>0)有以下四个结论:

①这是y关于x的反比例函数;②当x>0时,y的值随着x的增大而减小;③函数图象与x轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.

其中正确的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ACABCD的对角线,在AD边上取一点F,连接BFAC于点E,并延长BFCD的延长线于点G

(1)若∠ABF=∠ACF,求证:CE2EFEG

(2)若DGDCBE=6,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数

(1)求证:无论m为任何实数,此函数图象与x轴总有两个交点;

(2)若此函数图象与x轴的一个交点为(-3,0),求此函数图象与x轴的另一个交点坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

1)求ABC的坐标;

2)点M为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQ∥AB交抛物线于点Q,过点QQN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点Fy轴的平行线,与直线AC交于点G(点G在点F的上方).FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在双曲线y上,点B在双曲线yk≠0)上,ABx轴,过点AADx轴于D.连接OB,与AD相交于点C,若AC=2CD,则k__

查看答案和解析>>

同步练习册答案