【题目】已知二次函数.
(1)求证:无论m为任何实数,此函数图象与x轴总有两个交点;
(2)若此函数图象与x轴的一个交点为(-3,0),求此函数图象与x轴的另一个交点坐标.
科目:初中数学 来源: 题型:
【题目】(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,中,,点在数轴-1处,点在数轴1处,,,则数轴上点对应的数是 .
(2)如图2,点是直线上的动点,过点作垂直轴于点,点是轴上的动点,当以,,为顶点的三角形为等腰直角三角形时点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点C、D、B、F在一条直线上,且AB⊥BD,DE⊥BD,AB=CD,CE=AF.
求证:(1)△ABF≌△CDE;
(2)CE⊥AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知二次函数的图象经过点(﹣2,8)和(﹣1,5),求这个二次函数的表达式;
(2)已知抛物线的顶点为(﹣1,﹣3),与y轴的交点为(0,﹣5),求这个抛物线相应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数 的图象经过点C(0,3),与轴分别交于点A、点B(3,0).点、、都在这个二次函数的图象上,其中0<<4,连接DE、DF、EF,记△DEF的面积为S.
(1)求二次函数的表达式;
(2)若=0,求S的最大值,并求此时的值;
(3)若=2,当取不同数值时,S的值是否变化,如不变,求该定值;如变化,试用含的代数式表示S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为.
(1)求k的值;
(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;
(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了争创全国文明卫生城市,优化城市环境,节约能源,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:
A | B | |
价格(万元/台) | a | b |
节省的油量(万升/年) | 2.4 | 2 |
经调查,购买一台A型车比购买一台B型车多10万元,购买3台A型车比购买4台B型车少30万元.
(1)请求出a和b的值;
(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的油量不低于21.6万升,请问有几种购车方案?请写出解答过程.
(3)求(2)中最省钱的购车方案及所需的购车款.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:
如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.
(1) 判定△ABD 与△AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);
(2)∠ACB 与∠ABC的数量关系为:___________________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com