【题目】在平面直角坐标系中,O为原点,点B在x轴的正半轴上,D(0,8),将矩形OBCD折叠,使得顶点B落在CD边上的P点处.
(1)若图1中的点 P 恰好是CD边的中点,求∠AOB的度数.
(2)如图1,已知折痕与边BC交于点A,若OD=2CP,求点A的坐标.
(3)如图2,在(2)的条件下,擦去折痕AO,线段AP,连接BP,动点M在线段OP上(点M与P,O不重合),动点N在线段OB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M,N在移动过程中,线段EF的长度是否发生变化?
若变化,说明理由;若不变,求出线段EF的长度.
【答案】(1)30°;(2)A(10,5); (3)2.
【解析】
(1)根据点P恰好是CD边的中点设DP=PC=y,则DC=OB=OP=2y,在Rt△ODP中,根据OD2+DP2=OP2,解得:y= ,然后利用△ODP∽△PCA得到AC=,从而利用tan∠AOB=得到∠AOB=30°;
(2)设OB=OP=DC=x,则DP=x-4,在Rt△ODP中,根据OD2+DP2=OP2,解得:x=10,然后根据△ODP∽△PCA得到AC==3,从而得到AB=5,表示出点A(10,5);
(3)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB,最后代入EF=PB即可得出线段EF的长度不变.
(1)∵点P恰好是CD边的中点,
设DP=PC=y,
则DC=OB=OP=2y,
在Rt△ODP中,OD2+DP2=OP2,
即:82+y2=(2y)2,
解得:y=,
∵∠OPA=∠B=90°,
∴△ODP∽△PCA,
∴OD:PC=DP:CA,
∴8:y=y:AC,
则AC=,
∴AB=8-,
∵OB=2y=,
∴tan∠AOB= ,
∴∠AOB=30°
(2)∵D(0,8),
∴OD=BC=8,
∵OD=2CP,
∴CP=4,
设OB=OP=DC=x,则DP=x﹣4,
在Rt△ODP中,OD2+DP2=OP2,
即:8/span>2+(x﹣4)2=x2,解得:x=10,
∵∠OPA=∠B=90°,
∴△ODP∽△PCA,
∴OD:PC=DP:CA,
∴8:4=(x﹣4):AC,
则AC==3,∴AB=5,
∴点A(10,5);
(3)作MQ∥AN,交PB于点Q,如图,
∵AP=AB,MQ∥AN
∴∠APB=∠ABP=∠MQP.
∴MP=MQ,
∵BN=PM,
∴BN=QM.
∵MP=MQ,ME⊥PQ,
∴EQ=PQ.
∵MQ∥AN,
∴∠QMF=∠BNF,
∴△MFQ≌△NFB(AAS).
∴QF=QB,
∴EF=EQ+QF=PQ+QB=PB,
由(2)中的结论可得:PC=4,BC=8,∠C=90°,
∴PB= ,
∴EF=PB=2,
∴在(2)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,点A,B的坐标分别为(1,0),(0,2),AC⊥AB,且AB=AC,直线BC交轴于点D,抛物线经过点A,B,D.
(1)求直线BC和抛物线的函数表达式;
(2)点P是直线BD下方的抛物线上一点,求△PCD面积的最大值,以及△PCD面积取得最大值时,点P的坐标;
(3)若点P的坐标为(2)小题中,△PCD的面积取得最大值时对应的坐标.平面内存在直线l,使点B,D,P到该直线的距离都相等,请直接写出所有满足条件的直线l的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:
用户季度用水量频数分布表
平均用水量(吨) | 频数 | 频率 |
3<x≤6 | 10 | 0.1 |
6<x≤9 | m | 0.2 |
9<x≤12 | 36 | 0.36 |
12<x≤15 | 25 | n |
15<x≤18 | 9 | 0.09 |
请根据上面的统计图表,解答下列问题:
(1)在频数分布表中:m=_______,n=________;
(2)根据题中数据补全频数直方图;
(3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).
(1)请用列表的方法表示出上述游戏中两数和的所有可能的结果;
(2)分别求出李燕和刘凯获胜的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC中,∠C>∠B.
(1)尺规作图:作∠ACM=∠B,且使CM与边AB交于点D(保留作图痕迹,不写作法和证明);
(2)在(1)中所形成的图形中,若AD=2,BD=4,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.
(1)求甲、乙两仓库各存放原料多少吨?
(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);
(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═x+6过点B和点C,且AC⊥x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.
(1)求直线y=kx+b的函数表达式及点C的坐标;
(2)当MN∥x轴时,求t的值;
(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点M(-3,0),点N 是点M关于原点的对称点,点A是函数y= -x+1 图象上的一点,若△AMN是直角三角形,则点A的坐标为_______
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com