精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,ABC中,∠C>B.

(1)尺规作图:作∠ACM=B,且使CM与边AB交于点D(保留作图痕迹,不写作法和证明)

(2)(1)中所形成的图形中,若AD=2BD=4,求AC的长.

【答案】1)图见解析;(22

【解析】

1)首先利用作一个角等于已知角的方法作∠ACM=B

2)根据作图可得,∠ACD=B,再加上公共角∠A=A,可得ACD∽△ABC,再根据相似三角形对应边成比例可得,再把比例式进行变形可得 然后代入数进行计算即可.

解:(1)如图所示,∠ACM为所求;

2)在ACDABC中,∵∠ACD=B,∠A=A

∴△ACD∽△ABC

AD=2,BD=4

AC2=AD·AB=ADAD+DB=2×6=12

AC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCDADBC相交于点EAF平分∠BAD,交BC于点F,交CD的延长线于点G

1)若∠G=29°,求∠ADC的度数;

2)若点FBC的中点,求证:AB=AD+CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(抗击疫情)为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出听课不停学的要求,各地学校也都开展了远程网络教学,某校集中为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了你对哪类在线学习方式最感兴趣的调查,并根据结果绘制成如下两幅不完整的统计图。

1)本次调查的人数有多少人?

2)请补全条形图;

3)请求出“在线答疑”在扇形图中的圆心角度数;

4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, 分别是边上的两个动点( 不与 重合),且保持 ,以 为边,在点 A 的异侧作正方形

1)试求的面积;

2)当边 重合时,求正方形的边长;

3)设 与正方形 重叠部分的面积为,试求关于 的函数关系式,并写出自变量的范围;

4)当 是等腰三角形时,请直接写出 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于A(﹣21),B1n)两点.

1)求反比例函数和一次函数的解析式;

2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点Bx轴的正半轴上,D08),将矩形OBCD折叠,使得顶点B落在CD边上的P点处.

1)若图1中的点 P 恰好是CD边的中点,求∠AOB的度数.

2)如图1,已知折痕与边BC交于点A,若OD=2CP,求点A的坐标.

3)如图2,在(2)的条件下,擦去折痕AO,线段AP,连接BP,动点M在线段OP上(点MPO不重合),动点N在线段OB的延长线上,且BN=PM,连接MNPB于点F,作MEBP于点E,试问当点MN在移动过程中,线段EF的长度是否发生变化?

若变化,说明理由;若不变,求出线段EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2011山东济南,279分)如图,矩形OABC中,点O为原点,点A的坐标为(08),点C的坐标为(60).抛物线经过AC两点,与AB边交于点D

1)求抛物线的函数表达式;

2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m△CPQ的面积为S

S关于m的函数表达式,并求出m为何值时,S取得最大值;

S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于二次函数y=﹣(xm2m+1m为常数),下列描述错误的是(  )

A.m2时,函数的最大值是﹣1

B.函数图象的顶点始终在直线y=﹣x+1的图象上

C.当﹣1x2时,yx的增大而增大,则m的取值范围为m≤2

D.m0时,函数图象的顶点及函数图象与x轴的两个交点构成的三角形是等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,∠ACB =90°,∠CAB= 30°ABD是等边三角形. 如图2,将四边形ACBD折叠,使DC重合,EF为折痕,则∠ACE的正弦值为(

A.B.C.D.

查看答案和解析>>

同步练习册答案