【题目】如图1,一次函数y=﹣x+b与反比例函数(k≠0)的图象交于点A(1,3),B(m,1),与x轴交于点D,直线OA与反比例函数(k≠0)的图象的另一支交于点C,过点B作直线l垂直于x轴,点E是点D关于直线l的对称点.
(1)k= ;
(2)判断点B、E、C是否在同一条直线上,并说明理由;
(3)如图2,已知点F在x轴正半轴上,OF=,点P是反比例函数(k≠0)的图象位于第一象限部分上的点(点P在点A的上方),∠ABP=∠EBF,则点P的坐标为( , ).
【答案】(1)3;(2)在同一直线上;(3), .
【解析】试题分析:(1)把A点坐标代入中可求出k的值;
(2)先利用反比例函数的中心对称性得到C(﹣1,﹣3),再把B(m,1)代入求出m得到B(3,1),通过确定直线AB的解析式得到D(4,0),接着利用对称性确定E(2,0),于是利用待定系数法看球出直线BC的解析式为y=x﹣2,然后判断点E是否直线BC上;
(3)直线AB交y轴于M,直线BP交y轴于N,如图2,先确定M(0,4),计算出BM=,BE=,EF=,再证明△BMN∽△BEF,通过相似比计算出MN=,从而得到N(0, ),则利用待定系数法得到直线BN的解析式为,然后通过解方程组得P点坐标.
试题解析:解:(1)∵A(1,3)在反比例函数的图象上,∴k=1×3=3;
(2)点B、E、C在同一条直线上.理由如下:
∵直线OA与反比例函数(k≠0)的图象的另一支交于点C,∴点A与点C关于原点对称,∴C(﹣1,﹣3),∵B(m,1)在反比例函数的图象上,∴1×m=3,解得m=3,即B(3,1),把A(1,3)代入y=﹣x+b得﹣1+b=3,解得b=4,∴直线AB的解析式为y=﹣x+4,当y=0时,﹣x+4=0,解得x=4,则D(4,0),∵点E与点D关于直线x=3对称,∴E(2,0),设直线BC的解析式为y=px+q,把B(3,1),C(﹣1,﹣3)代入得: ,解得: ,∴直线BC的解析式为y=x﹣2,当x=2时,y=x﹣2=0,∴点E在直线BC上,即点B、E、C在同一条直线上;
(3)直线AB交y轴于M,直线BP交y轴于N,如图2,当x=0时,y=﹣x+4=4,则M(0,4),而B(3,1),E(2,0),F(,0),∴BM==,BE==,EF=2﹣=,∵OM=OD=4,∴△OMD为等腰直角三角形,∴∠OMD=∠ODM=45°,∵点E与点D关于直线x=3对称,∴∠BED=∠BDE=45°,∴∠BMN=∠BEF=135°,∵∠ABP=∠EBF,∴△BMN∽△BEF,∴,即,解得MN=,∴N(0, ),设直线BN的解析式为y=ax+n,把B(3,1),N(0, )代入得: ,解得: ,∴直线BN的解析式为,解方程组,得: 或,∴P点坐标为(, ).
故答案为:3, , .
科目:初中数学 来源: 题型:
【题目】如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.
(1)求证:四边形BDEF为平行四边形;
(2)当∠C=45°,BD=2时,求D,F两点间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的证明.
已知,如图所示,BCE,AFE是直线,
AB∥CD,∠1=∠2,∠3=∠4.
求证:AD∥BE
证明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵ ∠1 =∠2 (已知)
∴ ∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:
①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.
以上结论正确的有( )个.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.
(2)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.
①求证:AD=BE;
②求∠AEB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于y轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F的坐标.D、E、F点的坐标是:D( , ) E( , ) F( , );
(2)求四边形ABED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:求代数式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代数式m2+m+4的最小值;
(2)求代数式4﹣x2+2x的最大值;
(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com