精英家教网 > 初中数学 > 题目详情
19.如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为(  )
A.5050m2B.5000m2C.4900m2D.4998m2

分析 根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.

解答 解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.
所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).
故选:B.

点评 此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.解不等式:$\frac{2+x}{3}$>$\frac{3x+1}{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.列方程解应用题:
某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额的平均增长率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.?ABCD的周长为20cm,对角线AC,BD相交于点O,△COB的周长比△AOB的周长大2厘米,那么BC=6厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.化简或计算:
(1)$\frac{b}{a-b}$+$\frac{a}{a+b}$+$\frac{2ab}{{a}^{2}-{b}^{2}}$      
(2)($\frac{x+1}{x-1}$+$\frac{1}{{x}^{2}-2x+1}$)÷$\frac{x}{x-1}$
(3)$\sqrt{12}$-$\sqrt{18}$-$\sqrt{0.5}$+$\sqrt{\frac{1}{3}}$;          
(4)$\frac{1}{3}$$\sqrt{{x}^{2}y}$×(-$\frac{1}{4}$$\sqrt{\frac{{y}^{2}}{x}}$)÷(-$\frac{1}{6}$$\sqrt{{x}^{2}}y$)
(5)解方程:$\frac{1}{x-3}$+2=$\frac{x-4}{3-x}$.        
(6)解方程:$\frac{1}{y-1}$+$\frac{2}{{y}^{2}+2y-3}$=$\frac{y-1}{{y}^{2}-9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.解不等式组$\left\{\begin{array}{l}{\frac{x-3}{2}+3≥x+1}\\{1-3(x-1)<8-x}\end{array}\right.$,并写出该不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简,再求值:-$\frac{3}{2}$x-4($\frac{1}{2}$x-$\frac{1}{6}$y2)+($\frac{1}{2}$x+$\frac{1}{3}$y2),其中x=-2,y=$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算题
(1)(xy22-2x(xy4
(2)(-2x-1)(3x-2)
(3)解不等式2x-4≤3(2-x)并把解集在数轴上表示出来
(4)解不等式组$\left\{\begin{array}{l}{x+3>0}\\{3(x-1)≤2x-1}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算题
(1)-12013+($\frac{1}{2}$)-2-(-2)0  
(2)(-2x)2•(x23÷(-x)2
(3)(x-1)(x-2)-3x(x+3)+2(x+2)(x-1),
(4)先化简,再求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=$\frac{1}{2015}$.

查看答案和解析>>

同步练习册答案