【题目】先阅读下列解答过程,然后再解题.
例:已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.
解法一:设2x3﹣x2+m=(2x+1)(x 2+ax+b),
则2x 3﹣x2+m=2x 3+(2a+1)x2+(a+2b)x+b.
比较系数得
,解得
,∴m=
.
解法二:设2x3﹣x2+m=A(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取x=﹣
,2×(﹣)3﹣(﹣)2+m=0,故m=
.
(1)已知多项式2x3﹣2x2+ m有一个因式是x+2,求m的值.
(2)已知x 4+ m x3+ n x﹣16有因式(x﹣1)和(x﹣2),求m、n的值.
【答案】(1)m=24;(2)m=﹣5,n=20.
【解析】
(1)设2x3﹣2x2+m=A(x+2)(A为整式),由于是恒等式,则取x=-2,代入即可解答;
(2)设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),由于是恒等式,则取x=1和x=2,代入即可解答.
解:(1)∵多项式2x3﹣2x2+m有一个因式是x+2,
∴设2x3﹣2x2+m=A(x+2)(A为整式)
由于上式为恒等式,为方便计算取x=﹣2,
2×(﹣2)3﹣2×(﹣2)2+m=0,故m=24;
(2)∵x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),
∴设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式)
由于上式为恒等式,为方便计算取x=2和x=1,
代入得:24+m×23+2n﹣16=0,14+m×13+n﹣16=0,
解得:m=﹣5,n=20.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE= .
(2)设∠BAC=α,∠DCE=β:
①如图1,当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由;
②当点D在直线BC上(不与B、C重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),E是直线AB、CD内部一点,AB∥CD,连接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③在图(1)中∠AED、∠EAB、∠EDC有什么数量关系,并证明你的结论.
(2)拓展:如图(2),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中③④位于直线AB的上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF之间的关系.(不要求证明)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于
的一元二次方程
的两个根,且OA>OB![]()
(1)求cos∠ABC的值。
(2)若E为x轴上的点,且
,求出点E的坐标,并判断△AOE与△DAO是否相似?请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三个项点的坐标分别为A (3. 3),B (-3, 0), C (0. -2).
![]()
(1)在下面的平面直角坐标系中分别描出A,B, C三点,并画出△ABC;
(2)将(1)中的△ABC向上平移3个单位长度,向左中移2个单位长度,得到△
在图中画出△
,请分别写出A1、B1、C1三点的坐标.
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一架方梯AB长25米,如图所示,斜靠在一面上:
![]()
(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?
(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),![]()
(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;
(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或 “B”或“C”);
(3)在图2中画出图①绕点A顺时针旋转90°后的图④.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com