【题目】已知A、B在数轴上对应的数分别用a、b表示,且(b+10)2+|a﹣20|=0,P是数轴上的一个动点.
(1)在数轴上标出A、B的位置,并求出A、B之间的距离.
(2)当P点满足PB=2PA时,求P点对应的数.
(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,依此类推,…点P能够移到与A、B重合的位置吗?若能,请探索第几次移动时重合;若不能,请说明理由.
【答案】(1)AB=30;(2)P点对应的数为10或50;(3)第20次P与A重合;点P与点B不重合,理由见解析.
【解析】试题分析:(1)先根据非负数的性质求出a,b的值,在数轴上表示出A、B的位置,根据数轴上两点间的距离公式,求出A、B之间的距离即可;
(2)设P点对应的数为x,当P点满足PB=2PA时,分三种情况讨论,根据PB=2PA求出x的值即可;
(3)根据第一次点P表示﹣1,第二次点P表示2,点P表示的数依次为﹣3,4,﹣5,6…,找出规律即可得出结论.
试题解析:(1)∵(b+10)2+|a﹣20|=0,
∴b+10=0,a﹣20=0,
∴b=﹣10,a=20.
A、B的位置如图所示:
∴AB=|﹣10﹣20|=30;
(2)设P点对应的数为x,当P点满足PB=2PA时,分三种情况讨论:
①若点P在点B的左侧,则PB<PA,与PB=2PA不符,舍去;
②若点P在AB之间,则x﹣(﹣10)=2(20﹣x),
解得x=10;
③若点P在点A的右侧,则x﹣(﹣10)=2(x﹣20),
解得x=50,
综上所述,P点对应的数为10或50;
(3)由题可得,第一次点P表示﹣1,第二次点P表示2,点P表示的数依次为﹣3,4,﹣5,6…,
∴第n次为(﹣1)nn,
∵点A表示20,点B表示﹣10,
∴当n=20时,(﹣1)nn=20;
当n=10时,(﹣1)nn=10≠﹣10,
∴第20次P与A重合;点P与点B不重合.
科目:初中数学 来源: 题型:
【题目】如图①,△ABC的角平分线BD,CE相交于点P.
(1)如果∠A=80,求∠BPC= .
(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示) .
(3)将直线MN绕点P旋转。
(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.阅读下列材料并解决有关问题:我们知道|x|=,
所以当x>0时, ==1; 当x<0时, ==﹣1.现在我们可以用这个结论来解决下面问题:
(1)已知a,b是有理数,当ab≠0时, + ;
(2)已知a,b是有理数,当abc≠0时, ++= ;
(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABCD的面积S□ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△ABC=S□ABDC,若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:(1) 的值不变,(2) 的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD 中,∠A∶∠B∶∠C∶∠D 的值可能是( )
A. 2∶5∶2∶5 B. 3∶4∶4∶5 C. 4∶4∶3∶2 D. 2∶3∶5∶6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com