精英家教网 > 初中数学 > 题目详情

【题目】如图,在斜坡顶部有一铁塔ABBCD的中点CD是水平的.在阳光的照射下塔影DE留在斜坡面上.在同一时刻小明站在点E其影子EF在直线DE小华站在点G影子GH在直线CD他们的影子长分别为2 m1 m.已知CD12 mDE18 m小明和小华身高均为1.6 m那么塔高AB为多少?

【答案】铁塔AB的高度为24 m.

【解析】

过点D构造矩形,把塔高的影长分解为平地上的BD斜坡上的DE.然后根据影长的比分別求得AN,GB,把它们相加即可

如图,过点DDMCD,交AE于点M,过点MMNAB,垂足为N

则四边形BDMN为矩形,∴MNBDBNDM.

由题意,得.

DMDE×1.6÷214.4(m)

MNBD CD6 m

AN1.6×69.6(m)

ABANBN9.614.424(m)

答:铁塔AB的高度为24 m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h20t5t2

1)小球飞行时间是多少时,小球最高?最大高度是多少?

2)小球飞行时间t在什么范围时,飞行高度不低于15m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1的⊙P的圆心在(﹣4,0)处.若⊙P以每秒1个单位长度,沿x轴向右匀速运动.设运动时间为t秒,当⊙P上有且只有2个点到y轴的距离为2,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:ABO的直径,ACOGEAG上一点,D为△BCE内心,BEADF,且∠DBE=∠BAD

(1)求证:BCO的切线;

(2)求证:DFDG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PEBC于点EPFDC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EFAH于点G,当点PBD上运动时(不包括BD两点),以下结论中:①MFMC;②APEF;③AHEF;④AP2PMPH;⑤EF的最小值是.其中正确结论有( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为_____cm3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰,点为斜边上,作相切于点,交于点、点.已知,则的长度为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ca≠0)的图象与x轴交于AB两点,与y轴交于点C,且OC2OB则下列结论:①abc0;②a+b+c0;③ac2b+40;④OAOB,其中正确的结论有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宝鸡市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.小亮想知道石鼓阁的高是多少,他和同学小明对石鼓阁进行测量.测量方案如下:如图,小明在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小明看着镜面上的标记,他来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小明眼睛与地面的高度ED1.6米,CD2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.6米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.6米,影长FH3.2米.已知ABBMEDBMGFBM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.

查看答案和解析>>

同步练习册答案