【题目】如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m.(1)求桥拱的半径.
(2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.
【答案】(1) 桥拱的半径为50 m;(2)这艘轮船能顺利通过,理由见解析.
【解析】试题分析:
(1)找到圆的圆心E,过点E作EF⊥AB于点F,延长EF交于点C,连接AE,在Rt△AEF中用勾股定理求AE的长;
(2)连接EM,设EC与MN的交点为D,在Rt△DME中,用勾股定理求出DE,再求DF的长,比较DF与9的大小,即可求解.
试题解析:
(1)如图,点E是桥拱所在圆的圆心.过点E作EF⊥AB于点F,
延长EF交于点C,连接AE,则CF=20 m.由垂径定理知,F是AB的中点,
∴AF=FB=AB=40 m.设半径是r m,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50.∴桥拱的半径为50 m.
(2)这艘轮船能顺利通过.理由如下:
当宽60 m的轮船刚好可通过拱桥时,如图,MN为轮船顶部的位置.
连接EM,设EC与MN的交点为D,
则DE⊥MN,∴DM=30 m,∴DE===40(m).
∵EF=EC-CF=50-20=30(m),∴DF=DE-EF=40-30=10(m).
∵10 m>9 m,∴这艘轮船能顺利通过.
科目:初中数学 来源: 题型:
【题目】如图,已知的三个顶点的坐标分别为、、.
(1)请直接写出点关于轴对称的点的坐标;
(2)将绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;
(3)请直接写出:以为顶点的平行四边形的第四个顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知: 两直线,,且∥CD,点,分别在直线,上. 放置一个足够大的三角尺,使得三角尺的两边,分别经过点,. 过点作射线,使得.
(1)转动三角尺,如图①所示,当射线与重合,时,则________;
(2)转动三角尺,如图②所示,当射线与不重合,时,求的度数.
(3)转动直角三角尺的过程中, 请直接写出与之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.
(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;
(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.
(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A. 当AB=BC时,它是菱形 B. 当AC⊥BD时,它是菱形
C. 当∠ABC=90°时,它是矩形 D. 当AC=BD时,它是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把y=x2的图象向上平移2个单位.
(1)求新图象的解析式、顶点坐标和对称轴;
(2)画出平移后的函数图象;
(3)求平移后的函数的最大值或最小值,并求对应的x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻的平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=18米,请根据上述信息求标语CD的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com