精英家教网 > 初中数学 > 题目详情

【题目】今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:

周数x

1

2

3

4

价格y(元/千克)

2

2.2

2.4

2.6

1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份yx的函数关系式;

2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8/千克下降至第2周的2.4/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出5月份yx的函数关系式;

3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为mx+1.25月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=﹣x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?

【答案】1y0.2x+1.8;(2y x2x+3.1;(3)应在第一周的利润最大,1(元/千克).

【解析】

1)从表格看出,x每增加1y就增加0.2,由此可确定是一次函数关系式,继而代入两点可得出解析式;

2)把x=1y=2.8x=2y=2.4,分别代入y=﹣x2+bx+c,可求bc的值,确定二次函数解析式;

3)根据一次函数,二次函数的性质及自变量的取值范围,求最大利润.

解:(1)通过观察可见四月份周数yx 的符合一次函数关系式,设这个关系式为:ykx+b

解得:

4月份yx 的函数关系式为y0.2x+1.8

2)将(12.8)(22.4)代入y=﹣x2+bx+c

可得:

解之:

x2

34月份此种蔬菜利润可表示为:W1ym=(0.2x+1.8)﹣(x+1.2),即:W1=﹣0.05x+0.6

由函数解析式可知,四月份的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W=﹣0.05×1+0.60.55(元/千克),

5月份此种蔬菜利润可表示为:W2ym=(x2x+3.1)﹣(﹣x+2),

即:W2x2x+1.1

由函数解析式可知,五月份的利润随周数变化符合二次函数且对称轴为:x=﹣=﹣

即在第14周的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W+1.11(元/千克).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,正方形ABCD的边长为3a,两动点EF分别从顶点BC同时开始以相同速度沿边BCCD运动,与BCF相应的EGH在运动过程中始终保持EGH≌△BCFBECG在一条直线上.

(1)BEa,求DH的长.

(2)E点在BC边上的什么位置时,DHE的面积取得最小值?并求该三角形面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小敏、小亮从AB两地观测空中C处一个气球,分别测得仰角为30°60°AB两地相距100 m.当气球沿与BA平行地方向飘移10 s后到达C处时,在A处测得气球的仰角为45°.

(1)求气球的高度(保留根式)

(2)求气球飘移的平均速度(保留根式)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,下列说法不正确的是(   )

A. AC=BD时,四边形ABCD是矩形

B. AB=BC时,四边形ABCD是菱形

C. AC⊥BD时,四边形ABCD是菱形

D. ∠DAB=90°时,四边形ABCD是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.

(1)求m的值和反比例函数的表达式;

(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;

(3)直线y=n沿y轴方向平移,当n为何值时,BMN的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国务院办公厅在2015316日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了足球在身边知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:

1)获得一等奖的学生人数;

2)在本次知识竞赛活动中,ABCD四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到AB两所学校的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.

(1)若四边形ABCD为正方形.

①如图①,请直接写出AE与DF的数量关系______________;

②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;

(2)如图③,若四边形ABCD为矩形,BC=mAB,其他条件都不变,将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图③中画出草图,并求出AE′与DF′的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,CD为⊙O上不同于AB的两点,∠ABD2BAC,连接CD,过点CCEDB,垂足为E,直径ABCE的延长线相交于F点.

1)求证:CF是⊙O的切线;

2)当BDsinF时,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,点ABCD都在格点上.

(Ⅰ)AC的长为   

(Ⅱ)将矩形ABCD绕点A顺时针旋转得矩形AEFG,其中,点C的对应点F落在格线AD的延长线上,请用无刻度的直尺在网格中画出矩形AEFG,并简要说明点EG的位置是如何找到的.   

查看答案和解析>>

同步练习册答案