精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,CD为⊙O上不同于AB的两点,∠ABD2BAC,连接CD,过点CCEDB,垂足为E,直径ABCE的延长线相交于F点.

1)求证:CF是⊙O的切线;

2)当BDsinF时,求OF的长.

【答案】1)见解析;(2OF5

【解析】

1)连接OC.先根据等边对等角及三角形外角的性质得出∠321,由已知∠421,得到∠4=∠3,则OCDB,再由CEDB,得到OCCF,根据切线的判定即可证明CF为⊙O的切线;

2)连接AD.由圆周角定理得出∠D90°,证出∠BAD=∠F,得出sinBADsinF,求出ABBD6,得出OBOC3,再由sinF即可求出OF

1)连接OC.如图1所示:

OAOC

∴∠1=∠2

又∵∠3=∠1+2

∴∠321

又∵∠421

∴∠4=∠3

OCDB

CEDB

OCCF

又∵OC为⊙O的半径,

CF为⊙O的切线;

2)连接AD.如图2所示:

AB是直径,

∴∠D90°

CFAD

∴∠BAD=∠F

sinBADsinF

ABBD6

OBOC3

OCCF

∴∠OCF90°

sinF

解得:OF5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求证:对于任意实数m,方程总有两个不相等的实数根;

2)若方程的一个根是1,求m的值及方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:

周数x

1

2

3

4

价格y(元/千克)

2

2.2

2.4

2.6

1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份yx的函数关系式;

2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8/千克下降至第2周的2.4/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出5月份yx的函数关系式;

3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为mx+1.25月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=﹣x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠CRt∠,AB2,∠B30°,正六边形DEFGHI完全落在RtABC内,且DEBC边上,FAC边上,HAB边上,则正六边形DEFGHI的边长为_____,过IA1C1AC,然后在A1C1B内用同样的方法作第二个正六边形,按照上面的步骤继续下去,则第n个正六边形的边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是23,从每组牌中各随机摸出一张牌,称为一次试验.

1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?

2)小丽认为:在一次试验中,两张牌的牌面数字和可能为456三种情况,所以出现和为4’的概率是,她的这种看法是否正确?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:

某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比特殊四边形的学习,我们可以定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形

探索体验

1)如图①,已知四边形ABCD等对角四边形,∠A≠C,∠A=70°,∠B=80°.求∠C,∠D的度数.

2)如图②,若AB=AD=aCB=CD=b,且a≠b,那么四边形ABCD等对角四边形吗?试说明理由.

尝试应用

3)如图③,在边长为6的正方形木板ABEF上裁出等对角四边形”ABCD,若已经确定DA=4,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点点C,使四边形ABCD以∠DAB=BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在坡顶A处的同一水平面上有一座大型纪念碑BC,某同学在斜坡底P处测得该碑的碑顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米到达坡顶A,在坡顶A处又测得该碑的碑顶B的仰角为76°,求纪念碑BC的高度(结果精确到0.1米).(过点A作AD⊥PO,垂足为点D.坡度=AD:PD)(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

同步练习册答案