精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE.

(1)求证:EC=DA;
(2)若AC⊥CB,试判断四边形AECD的形状,并证明你的结论.

【答案】
(1)

证明:∵EC∥AB,

∴∠FEC=∠DBF,∠ECF=∠BDF,

∵F是CD的中点,

∴FD=CF,

在△FEC与△DBF中,

∴△FEC≌△DBF,

∴EC=BD,

又∵CD是AB边上的中线,

∴BD=AD,

∴EC=AD.


(2)

解:

四边形AECD是菱形.

证明:∵EC=AD,EC∥AD,

∴四边形AECD是平行四边形,

∵AC⊥CB,CD是AB边上的中线,

∴CD=AD=BD,

∴四边形AECD是菱形.


【解析】(1)根据平行线的性质得出∠FEC=∠DBF,∠ECF=∠BDF,F是CD的中点,得出FD=CF,再利用AAS证明△FEC与△DBF全等,进一步证明即可;
(2)利用直角三角形的性质:斜边上的中线等于斜边的,得出CD=DA,进一步得出结论即可.
【考点精析】解答此题的关键在于理解菱形的判定方法的相关知识,掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与的图像交于点,与轴和 轴分别交于点和点,且点的横坐标为.

(1)的值与的长;

(2)若点为线段上一点,且,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M、N分别是正方形ABCD边DC、AB的中点,分别以AE、BF为折痕,使点D、点C落在MN的点G处,则△ABG是 三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.

(1)求证:BC是⊙O的切线。
(2)若BD平分∠ABE,求证:DE2=DFDB。
(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是(  )

A.18 ﹣9π
B.18﹣3π
C.9
D.18 ﹣3π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(x﹣y)2﹣(x﹣2y)(x+y)
(2)
÷(2x﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是(  )
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13
D.点数的和小于2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.
第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为

查看答案和解析>>

同步练习册答案