【题目】如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在△BED中作出BD边上的高EF;BE边上的高DG;
(3)若△ABC的面积为40,BD=5,则△BDE 中BD边上的高EF为多少?若BE=6,求△BED中BE边上的高DG为多少?
【答案】(1)∠BED=55°;(2)画图见解析;(3)EF=4,DG=.
【解析】试题分析:(1)根据三角形内角与外角的性质解答即可;
(2)过E作BC边的垂线,过D作BE边的垂线即可;
(3)根据三角形中线性质求出△BDE的面积,再由三角形的面积公式求出高即可.
试题解析:(1)∵∠BED是△ABE的外角,
∴∠BED=∠ABE+∠BAD=15°+40°=55°;
(2)画图如下:
(3)∵AD为△ABC的中线,BE为△ABD的中线,
∴△ABD的面积=△ABC的面积=20,△BDE的面积=△ABD的面积=10,
∴BD·EF=10, ×5EF=10,
解得EF=4,
BE·DG=10, ×6 DG =10,
EF=.
科目:初中数学 来源: 题型:
【题目】在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为1万米。最近一次台风的中心位置是P(-1,0),其影响范围的半径是4万米,则下列四个位置中受到了台风影响的是( )
A.(4,0)
B.(-4,0)
C.(2,4)
D.(0,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于实数a,符号[a]表示不大于a的最大整数,例如:[4.7]=4,[﹣π]=﹣4,[3]=3,如果[ +1]=﹣5,则x的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转后,得到△ADF,此时点D落在边BC的中点处,则图中与∠C相等的角(除∠C外)有( )
A.5个 B.4个 C.3个 D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,解答问题:
(1)计算下列各式:
① = , =;
② = , = .
通过计算,我们可以发现 =
(2)运用(1)中的结果可以得到:
=×=
(3)通过(1)(2),完成下列问题:
①化简: ;
②计算: ;
③化简 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com