【题目】如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为( )
A. 2 B. C. 1 D.
【答案】D
【解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°,由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x,在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
设CE=x,
∵四边形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°,
∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
∴BF=BC=5,EF=CE=x,DE=CDCE=3x,
在Rt△ABF中,由勾股定理得:AF==4,
∴DF=AD-AF=54=1,
在Rt△DEF中,由勾股定理得:EF2=DF2+DE2,
即x2=(3x)2+12,
解得:x= ,
故选D.
科目:初中数学 来源: 题型:
【题目】自主学习,请阅读下列解题过程.
解一元二次不等式:>0.
解:设=0,解得:=0,=5,则抛物线y=与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即>0,所以,一元二次不等式>0的解集为:x<0或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:
(1)上述解题过程中,渗透了下列数学思想中的 和 .(只填序号)
①转化思想 ②分类讨论思想 ③数形结合思想
(2)一元二次不等式<0的解集为 .
(3)用类似的方法解一元二次不等式:>0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016四川省自贡市)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值=______,tan∠APD的值=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定 时,需付的行李费 y(元)是行李质量 x(千克)的一次函数,且部分对应关系如下表所示.
(1)求 y 关于 x 的函数关系式;
(2)求旅客最多可免费携带行李的质量;
(3)当行李费为 3≤y≤10 时,可携带行李的质量 x 的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC,点D在AC上,BD=6cm,E,F分别是AB,BC边上的动点,△DEF周长的最小值为6 cm,则( )
A.20°B.25°C.30°D.35°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC和BD交于点O,分别过点C. D作CE∥BD,DE∥AC,CE和DE交于点E.
(1)求证:四边形ODEC是矩形;
(2)当∠ADB=60°,AD=2时,求EA的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l、l分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系.
(1)求这两条直线的解析式;
(2)当x为什么值时,小敏和小聪两人相距14km?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.
(1)如图(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;
(2)如图(2),CD与⊙O交于另一点E,BD:DE:EC=2;3:5求圆心O到直线CD的距离;
(3)若图(2)中的点D是直线AB上的动点,点D在运动过程中,会出现在C,D,E三点中,其中一点是另两点连线的中点的情况,问这样的情况出现几次?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com