精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程kx2+2(k+1)x+k-1=0有实根,
(1)求k的范围;
(2)若等腰三角形ABC的一边长a=1,另外两条边b,c恰好是这个方程的两个根,求△ABC的周长.
分析:(1)根据关于x的一元二次方程有实数根可知△≥0,k≠0,求出k的取值范围即可;
(2)由于a为低或腰不能确定,故应分两种情况进行讨论,
①当a为腰时,b、c中必有一个为1,把x=1代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断出a、b、c的值是否符合题意即可;
②当a为底时,b=c,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
解答:解:(1)∵原方程有实数根
∴△=[2(k+1)2-4k(k-1)]≥0,
∴k≥-
1
3

∵原方程是一元二次方程,
∴k≠0,
∴k的取值范围是:k≥-
1
3
且k≠0;

(2)①当b或c有一个是1时,将x=1代入原方程得k=-
1
4
,(4分)
k=-
1
4
代入原方程并化为一般式x2-6x+5=0,
解得方程另一根为5而1,1,5构不成三角形,故舍去;(5分)

②当b,c为腰时,即△=0,此时k=-
1
3
(6分)
∴原方程可化为:-
1
3
x2+
4
3
x-
4
3
=0,
解得x1=x2=2,(7分)
∴△ABC的周长为5.(8分)
点评:本题考查的是一元二次方程根的判别式及三角形的三边关系,在解答(2)时要注意分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案