精英家教网 > 初中数学 > 题目详情

【题目】已知函数 .(a为常数,a>0) (Ⅰ)若 是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在 上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在 ,使不等式f(x0)>m(1﹣a2)成立,求实数m的取值范围.

【答案】由题得: . (Ⅰ)由已知,得 ,∴a2﹣a﹣2=0,∵a>0,∴a=2
经检验:a=2符合题意.(2分)
(Ⅱ)当0<a≤2时,∵ ,∴
∴当 时, .又
∴f'(x)≥0,故f(x)在 上是增函数.
(Ⅲ)a∈(1,2)时,由(Ⅱ)知,f(x)在 上的最大值为
于是问题等价于:对任意的a∈(1,2),不等式 恒成立.
,(1<a<2)

当m=0时, ,∴g(a)在区间(1,2)上递减,此时,g(a)<g(1)=0,
由于a2﹣1>0,∴m≤0时不可能使g(a)>0恒成立,
故必有m>0,∴
,可知g(a)在区间 上递减,在此区间上,有g(a)<g(1)=0,与g(a)>0恒成立矛盾,故
这时,g'(a)>0,g(a)在(1,2)上递增,恒有g(a)>g(1)=0,满足题设要求,
,即
所以,实数m的取值范围为
【解析】(Ⅰ)先求出其导函数: ,利用 是函数f(x)的一个极值点对应的结论f'( )=0即可求a的值;(Ⅱ)利用: ,在0<a≤2时,分析出因式中的每一项都大于等于0即可证明结论;(Ⅲ)先由(Ⅱ)知,f(x)在 上的最大值为 ,把问题转化为对任意的a∈(1,2),不等式 恒成立;然后再利用导函数研究不等式左边的最小值看是否符合要求即可求实数m的取值范围.
【考点精析】关于本题考查的函数的极值与导数,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y= 的图象可能是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知f(x)=sinxcosx+ cos2x﹣ ,将f(x)的图象向右平移 个单位,再向上平移1个单位,得到y=g(x)的图象.若对任意实数x,都有g(a﹣x)=g(a+x)成立,则 =(
A.
B.1
C.
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+a.
(1)当a=3时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣3|,x∈R,f(x)+g(x)≥5,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数列{an}的首项a1=4,当n≥2时,an﹣1an﹣4an﹣1+4=0,数列{bn}满足bn=
(1)求证:数列{bn}是等差数列,并求{bn}的通项公式;
(2)若cn=4bn(nan﹣6),如果对任意n∈N* , 都有cn+ t≤2t2 , 求实数t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1是由大小相同的小立方块搭成的几何体,请在图2的方格中画出从上面和左面看到的该几何体的形状图.(只需用2B铅笔将虚线化为实线)

(2)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体最多需要   个小立方块.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,过左焦点F且垂直于x轴的直线与椭圆C相交,所得弦长为1,斜率为k(k≠0)的直线l过点(1,0),且与椭圆C相交于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在x轴上是否存在点M,使得无论k取何值, 为定值?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为 ,若直线l过点P,且倾斜角为 ,圆C以M为圆心,3为半径. (Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA||PB|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(
A.若a∈R,则“ <1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.若命题p:“?x∈R,sinx+cosx≤ ”,则¬p是真命题
D.命题“?x0∈R,使得x02+2x0+3<0”的否定是“?x∈R,x2+2x+3>0”

查看答案和解析>>

同步练习册答案