科目:初中数学 来源: 题型:
如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连结CD,点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.
图1
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
图2
(3)如图3中,若∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
图3
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是( ).
(A)AF=EF
(B)AB=EF
(C)AE=AF
(D)AF=BE
查看答案和解析>>
科目:初中数学 来源: 题型:
延长正方形ABCD的BC边至点E,使CE=AC,连结AE,交CD于F,那么∠AFC的度数为______,若BC=4cm,则△ACE的面积等于______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com