精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点(AB的左侧),与轴交于点C,顶点为D.

(1)求此抛物线的解析式.

(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标.

(3)将△BOC绕着它的顶点顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO’C’.当

旋转后的△BO’C’有一边与BD重合时,求△BO’C’不在BD上的顶点的坐标.

【答案】(1) ;(2) ;(3) .

【解析】

试题(1)利用根与系数的关系,列出方程求出m即可;

(2)根据图形,可设P(m,-m+2m+3),求出A、B、C的坐标,根据PC=PB,利用两点间距离公式,列出方程即可;

(3)应分为两种情况讨论:①BC′与BP重合,此时O′为所求点,过O′作x轴的垂线,设垂足为D,再等量代换后根据两角对应相等的两三角形相似,证得△PBC∽△O′BD,即可由比例线段和勾股定理求出O′的坐标;②当BO′与BP重合时,C′为所求点,可过B作直线BE⊥x轴,过C′作C′E⊥BE与E,按照①可求C′的坐标.

试题解析:

重合,

,

重合时,过轴,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过原点,与轴的另一个交点为,将抛物线向右平移个单位得到抛物线 轴于 两点(点在点的左边),交轴于点

)求抛物线的解析式及顶点坐标.

)以为斜边向上作等腰直角三角形,当点落在抛物线的对称轴上时,求抛物线的解析式.

)若抛物线的对称轴存在点,使为等边三角形,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC>60°,BAC<60°,AB为边作等边△ABD(点C、D在边AB的同侧),连接CD

1若∠ABC90°BAC30°,求∠BDC的度数;

2当∠BAC2BDC请判断△ABC的形状并说明理由

3)当∠BCD等于多少度时,∠BAC2BDC恒成立

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形的三个顶点的坐标分别为

1)作出三角形关于轴对称的三角形

2)点的坐标为 .

3)①利用网络画出线段的垂直平分线;②为直线上上一动点,则的最小值为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆的直径,点O是圆心,点COA的中点,CD⊥OA交半圆于点D,点E的中点,连接AEOD,过点DDP∥AEBA的延长线于点P

1)求∠AOD的度数;

2)求证:PD是半圆O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC为直角三角形,∠ACB=900AC=BC,ACx轴上,点B坐标为(3m)m>0),线段ABy轴相交于点D,以P10)为顶点的抛物线过点BD

1)求点A的坐标(用m表示);

2)求抛物线的解析式;

3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+BC)为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数是常数,)的图象过两点.

1)在图中画出该一次函数并求其表达式;

2)若点在该一次函数图象上,求的值;

3)把的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图形,并直接写出新函数图象对应的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数y=x2+bx+c的图象过点A(1,0)和C(0,﹣3)

(1)求这个二次函数的解析式;

(2)如果这个二次函数的图象与x轴的另一个交点为B,求线段AB的长.

(3)在这条抛物线上是否存在一点P,使ABP的面积为8?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案