【题目】如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.阴影部分的面积是_____(结果保留π).
科目:初中数学 来源: 题型:
【题目】解决问题:
如图,半径为4的外有一点P,且,点A在上,则PA的最大值和最小值分别是______和______.
如图,扇形AOB的半径为4,,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得周长的最小,请在图中确定点E、F的位置并直接写出周长的最小值;
拓展应用
如图,正方形ABCD的边长为;E是CD上一点不与D、C重合,于F,P在BE上,且,M、N分别是AB、AC上动点,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某机场为了方便旅客换乘,计划在一、二层之间安装电梯,截面设计图如图所示,已知两层AD与BC平行,层高AB为8米,A、D间水平距离为5米,∠ACB=21.5°,
(1)通过计算说明身高2.4米的人在竖直站立的情况下,搭乘电梯在D处会不会碰到头部;
(2)若采用中段加平台设计(如图虚线所示),已知平台MN∥BC,且AM段和NC段的坡度均为1:2(坡度是指坡面的铅直高度与水平宽度的比),求平台MN的长度.
(参考数据:sin21.5°=,cos21.5°=,tan21.5°=)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学团委会开展书法、诵读、演讲、征文四个项目(每人只参加一个项目)的比赛,初三(1)班全体同学都参加了比赛,为了解比赛的具体情况,小明收集整理数据后,绘制了以下不完整的折线统计图和扇形统计图,根据图表中的信息解答下列各题:
(1)初三(1)班的总人数为 ,扇形统计图中“征文”部分的圆心角度数为 度;
(2)请把折线统计图补充完整;
(3)平平和安安两个同学参加了比赛,请用“列表法”或“画树状图法”,求出他们参加的比赛项目相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,建筑物AB后有一座假山,其坡度为,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°.
(1)E点到水平地面的距离EF;
(2)建筑物AB的高.(结果精确到0.1,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,BD为⊙O的直径,且BD=8,是圆周的,A为上任意一点,取AC=AB,交BD的延长线于C,连结OA,并作AE⊥BD于E,设AB=x,CD=y.
(1)写出y关于x的函数关系式;
(2)当x为何值时,CA是⊙O的切线?
(3)当CA与⊙O相切时,求tan∠OAE的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com