精英家教网 > 初中数学 > 题目详情

【题目】解决问题:

如图,半径为4外有一点P,且,点A上,则PA的最大值和最小值分别是____________

如图,扇形AOB的半径为4P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得周长的最小,请在图中确定点EF的位置并直接写出周长的最小值;

拓展应用

如图,正方形ABCD的边长为ECD上一点不与DC重合FPBE上,且MN分别是ABAC上动点,求周长的最小值.

【答案】1113;(2)图见解析,周长最小值为;(3

【解析】

根据圆外一点P到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为113

作点P关于直线OA的对称点,作点P关于直线OB的对称点,连接,与OAOB分别交于点EF,点EF即为所求,此时周长最小,然后根据等腰直角三角形求解即可;

类似题作对称点,周长最小,然后由三角形相似和勾股定理求解.

解:如图圆外一点P到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP上,

此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.

的最大值

PA的最小值

故答案为113

如图,以O为圆心,OA为半径,画弧AB和弧BD,作点P关于直线OA的对称点,作点P关于直线OB的对称点,连接,与OAOB分别交于点EF,点EF即为所求.

连接OPPEPF

由对称知识可知,

为等腰直角三角形,

周长,此时周长最小.

故答案为

作点P关于直线AB的对称,连接,作点P关于直线AC的对称

连接,与ABAC分别交于点MN.如图③

由对称知识可知,周长

此时,周长最小

由对称性可知,

为等腰直角三角形,

周长最小值,当AP最短时,周长最小.

连接DF

,且

中,

,取AB中点O

F在以BC为直径的圆上运动,当DFO三点在同一直线上时,DF最短.

最小值为

此时,周长最小值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:在中,CD分别为BMAM上的点,四边形ABCD内接于,连接AC

如图,求证:弧BD

如图,若AB为直径,,求值;

如图,在的条件下,E为弧CD上一点不与CD重合FAB上一点,连接EFAC于点N,连接DNDE,若,求AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l上有两动点CD,点A、点B在直线l同侧,且A点与B点分别到l的距离为a米和b米(即图中AA′=a米,BB′=b米),且A′B′=c米,动点CD之间的距离总为S米,使CA的距离与DB的距离之和最小,则AC+BD的最小值为(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应荆州市创建全国文明城市号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).

(1)求yx之间的函数关系式,并写出自变量x的取值范围;

(2)若矩形空地的面积为160m2,求x的值;

(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.

单价(元/棵)

14

16

28

合理用地(m2/棵)

0.4

1

0.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△中,∠,点边上一点,以为直径的⊙与边相切于点,与边交于点,过点于点,连接

(1)求证:

(2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数轴于点,交轴于点,在轴上有一点,连接.

(1)求二次函数的表达式;

(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;

(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大课间到了,小明和小欢两人打算从教室匀速跑到600米外的操场做课间操,刚出发时小明就发现鞋带松了,停下来系鞋带,小欢则直接前往操场,小明系好鞋带后立即沿同一路开始追赶小欢,小明在途中追上小欢后继续前行,小明到达操场时课间操还没有开始,于是小明站在操场等待,小欢继续前往操场,设小明和小欢两人想距s(米),小欢行走的时间为t(分钟),s关于t的函数的部分图象如图所示,当两人第三次相距60米时,小明离操场还有_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点P(﹣21)关于y轴的对称点P,点Tt0)是x轴上的一个动点,当PTO是等腰三角形时,t的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,交轴于点,直线过点轴交于点,与抛物线的另一个交点为,作轴于点.设点是直线上方的抛物线上一动点(不与点重合),过点轴的平行线,交直线于点,作于点.

1)填空:______________________________

2)探究:是否存在这样的点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;

3)设的周长为,点的横坐标为,求的函数关系式,并求出的最大值.

查看答案和解析>>

同步练习册答案