【题目】已知:在中,C、D分别为BM、AM上的点,四边形ABCD内接于,连接AC,;
如图,求证:弧弧BD;
如图,若AB为直径,,求值;
如图,在的条件下,E为弧CD上一点不与C、D重合,F为AB上一点,连接EF交AC于点N,连接DN、DE,若,,,求AN的长.
【答案】(1)详见解析;(2)(3)
【解析】
证明弧弧BD可以转化证明
是直径可知三角形ABD是等腰直角三角形,从而得出,利用的特殊性构造直角三角形DCG,结合,可以求出,进而求出
为了求AN,可以过点N作于点M,求出MN,AM,即可求出因为P是BD的中点,所以连结OP,根据垂径定理可以得出,根据可得,从而得到矩形OPLH,结合矩形的性质,可以得出OH,EH的长度关系,在利用勾股定理建立方程,可求出HO,进而求出MN,AM,最终得出AN的长度.
,
,
又
,
弧弧BD
作于点G,连结如图
为直径
弧弧
,
又
,
又
,
连结BD交AC,EF分别为点P,点L,连结OP,OE,PE,再作于点H,于点如图3所示
,,
,
由得
,
即P为BD的中点
,
四边形OPLH为矩形
设,则.
又
垂直平分NE
,
又为等腰直角三角形
,
解得
,
.
科目:初中数学 来源: 题型:
【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数 | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累计车费 | 0 | 0.5 | 0.9 | 1.5 |
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)写出的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批衬衫,平均每天可售出20件,每件盈利40元为了扩大销售,增加盈利,商场决定采取降价措施,经调查发现,若毎件衬衫每降价1元,商场平均每天可多售出2件.
若每件降价x元,每天盈利y元,求出y与x之间的关系式;
每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆O的直径,在中,,,,半圆O以的速度从左向右运动,在运动过程中,点D、E始终在直线BC上,设运动时间为,当时,半圆O在的左侧,.
如图1当时,圆心O到AB所在直线的距离是______cm.
当t为何值时,的边AB所在的直线与半圆O所在圆相切?求时间t.
如图2,线段AB的中点为F,求圆心O与B、F两点构成以BF为腰的等腰三角形时运动的时间t.
在图2的基础上,建立如图所示的平面直角坐标系,四边形ACBG是矩形,如图3,半圆O向右运动的同时矩形也向右运动,速度为,问经过多长时间O、F、G在同一条直线上,求时间并求出此时DG的直线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量是售价的一次函数,且相关信息如下表:
售价(元/件) | 100 | 110 | 120 | 130 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:①销售该运动服每件的利润是( )元;
(2)求月销量y与售价x的一次函数关系式:
(3)设销售该运动服的月利润为W元,那么售价为多少元时,当月的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知,,点P为AB边上的一个动点,点E、F分别是CA,CB边的中点,过点P作于D,设,图中某条线段的长为y,如果表示y与x的函数关系的大致图象如图2所示,那么这条线段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解决问题:
如图,半径为4的外有一点P,且,点A在上,则PA的最大值和最小值分别是______和______.
如图,扇形AOB的半径为4,,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得周长的最小,请在图中确定点E、F的位置并直接写出周长的最小值;
拓展应用
如图,正方形ABCD的边长为;E是CD上一点不与D、C重合,于F,P在BE上,且,M、N分别是AB、AC上动点,求周长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com