【题目】如图,抛物线与轴交于点,交轴于点,直线过点与轴交于点,与抛物线的另一个交点为,作轴于点.设点是直线上方的抛物线上一动点(不与点、重合),过点作轴的平行线,交直线于点,作于点.
(1)填空:__________,__________,__________;
(2)探究:是否存在这样的点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;
(3)设的周长为,点的横坐标为,求与的函数关系式,并求出的最大值.
【答案】(1),,;(2)存在,点的坐标是和;(3),的最大值是15.
【解析】
(1)将A,B两点分别代入y=x2+bx+c求出b,c,将A代入y=kx-求出k;
(2)首先假设出P,M点的坐标,进而得出PM的长,将两函数联立得出D点坐标,进而得出CE的长,利用平行四边形的判定得出PM=CE时四边形PMEC是平行四边形,得出等式方程求解并判断即可;
(3)利用勾股定理得出DC的长,进而根据△PMN∽△DCE,得出两三角形周长之比,求出l与x的函数关系,再利用配方法求出二次函数最值即可.
解:(1):(1)把A(2,0),B(0,)代入y=x2+bx+c得 ,
解得;
把A(2,0)代入y=kx-得2k-=0,解得k=,
∴,,,
(2)设的坐标是,则的坐标是,
∴ ,
解方程,得:,,
∵点在第三象限,则点的坐标是,
由得点的坐标是,
∴,
由于轴,所以当时四边形是平行四边形.
即,
解这个方程得:,,符合,
当时,,当时,,
综上所述:点的坐标是和;
(3)在中,,
由勾股定理得:
∴的周长是24,
∵轴,∴,
∴,即
化简整理得:与的函数关系式是:,
,
∵,∴当时,的最大值是15.
科目:初中数学 来源: 题型:
【题目】解决问题:
如图,半径为4的外有一点P,且,点A在上,则PA的最大值和最小值分别是______和______.
如图,扇形AOB的半径为4,,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得周长的最小,请在图中确定点E、F的位置并直接写出周长的最小值;
拓展应用
如图,正方形ABCD的边长为;E是CD上一点不与D、C重合,于F,P在BE上,且,M、N分别是AB、AC上动点,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名 | 猕猴桃 | 芒果 |
批发价元千克 | 20 | 40 |
零售价元千克 | 26 | 50 |
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30 cm.
(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;
(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)
(参考数据:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过正方形网格中的格点、、、,请你仅用网格中的格点及无刻度的直尺分别在图1、图2、图3中画出一个满足下列两个条件的:
(1)顶点在上且不与点、、、重合;
(2)在图1、图2、图3中的正切值分别为1、、2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王华在学习相似三角形时,在北京市义务教育课程改革实验教材第17册书,第31页遇到这样一道题:
如图1,在△ABC中,P是边AB上的一点,联结CP.
要使△ACP∽△ABC,还需要补充的一个条件是____________,或_________.
请回答:
(1)王华补充的条件是____________________,或_________________.
(2)请你参考上面的图形和结论,探究、解答下面的问题:
如图2,在△ABC中,∠A=30°,AC2= AB2+AB.BC.
求∠C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE'F'G',此时点G'在AC上,连接CE',则CE'+CG'=______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:
(1)本次被调查的学生有_______人.
(2)将两幅统计图补充完整.
(3)若从3名喜欢“李晨”的学生和2名喜欢“”的学生中随机抽取两人参加文体活动,用树状图或列表法求出两人都是喜欢“李晨”的学生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com