【题目】为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若矩形空地的面积为160m2,求x的值;
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.
甲 | 乙 | 丙 | |
单价(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |
【答案】(1)y=﹣2x2+36x(0<x<18);(2)x的值为10;(3)这批植物不可以全部栽种到这块空地上.
【解析】
(1)根据矩形的面积公式计算即可;
(2)构建方程即可解决问题,注意检验是否符合题意;
(3)利用二次函数的性质求出y的最大值,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,可得a+7b=1500,推出b的最大值为214,此时a=2,再求出实际植物面积即可判断.
(1)y=x(36﹣2x)=﹣2x2+36x(0<x<18);
(2)由题意:﹣2x2+36x=160,
解得x=10或8,
∵x=8时,36﹣16=20<18,不符合题意,
∴x的值为10;
(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,
∴x=9时,y有最大值162,
设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,
由题意:14(400﹣a﹣b)+16a+28b=8600,
∴a+7b=1500,
∴b的最大值为214,此时a=2,
需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=162.8>162,
∴这批植物不可以全部栽种到这块空地上.
科目:初中数学 来源: 题型:
【题目】如图,半圆O的直径,在中,,,,半圆O以的速度从左向右运动,在运动过程中,点D、E始终在直线BC上,设运动时间为,当时,半圆O在的左侧,.
如图1当时,圆心O到AB所在直线的距离是______cm.
当t为何值时,的边AB所在的直线与半圆O所在圆相切?求时间t.
如图2,线段AB的中点为F,求圆心O与B、F两点构成以BF为腰的等腰三角形时运动的时间t.
在图2的基础上,建立如图所示的平面直角坐标系,四边形ACBG是矩形,如图3,半圆O向右运动的同时矩形也向右运动,速度为,问经过多长时间O、F、G在同一条直线上,求时间并求出此时DG的直线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知,,点P为AB边上的一个动点,点E、F分别是CA,CB边的中点,过点P作于D,设,图中某条线段的长为y,如果表示y与x的函数关系的大致图象如图2所示,那么这条线段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,作OF∥AB交BC于点F,连接EF.
(1)求证:OF⊥CE;
(2)求证:EF是⊙O的切线;
(3)若⊙O的半径为3,∠EAC=60°,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有四张背面完全相同的纸牌,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解决问题:
如图,半径为4的外有一点P,且,点A在上,则PA的最大值和最小值分别是______和______.
如图,扇形AOB的半径为4,,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得周长的最小,请在图中确定点E、F的位置并直接写出周长的最小值;
拓展应用
如图,正方形ABCD的边长为;E是CD上一点不与D、C重合,于F,P在BE上,且,M、N分别是AB、AC上动点,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,D为BC上一点,连接AD,过点B作BE垂直于CA的延长线于点E,BE与DA的延长线相交于点F.
(1)如图1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的长;
(2)如图2,若AB=AC,∠ADB=45°,求证;BC=DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名 | 猕猴桃 | 芒果 |
批发价元千克 | 20 | 40 |
零售价元千克 | 26 | 50 |
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com