【题目】(1)问题发现
如图1,和均为等边三角形,直线和直线交于点.
填空:①的度数是 ;
②线段,之间的数量关系为 .
(2)类比探究
如图2,和均为等腰直角三角形,,,,直线和直线交于点.请判断的度数及线段,之间的数量关系,并说明理由.
(3)解决问题
如图3,在平面直角坐标系中,点坐标为,点为轴上任意一点,连接,将绕点逆时针旋转至,连接,请直接写出的最小值.
【答案】(1)①;②
(2);,理由见解析
(3)的最小值为
【解析】
(1)先证明,可得,即可求得度数,.
(2)先证明,可得,由此即可解决问题;
(3)过点C作轴于点D,先证明,可得出,设B(0,a),则点C(a,4+a),利用勾股定理列出关于a的式子,配方求出OC的最小值即可.
(1)如图1中,
∵△ABC和△CDE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴AD=BE,∠CAD=∠CBF
设BC交AF于点O
∵∠AOC=∠BOF
∴∠BFO=∠ACO=60°,
∴∠AFB=;
(2),均为等腰直角三角形
∴
∴△ACD∽△BCE
∴
∵∠AFB+∠CBF=∠ACB+∠CAF
∴∠AFB=∠ACB=;
(3)过点C作轴于点D
∴
∵绕点逆时针旋转得到
∴
∴
∵
∴
∴
∴
设B(0,a),则点C(a,4+a)
∴
∴当a=-2时,取最小值8,此时OC=,
即OC可取的最小值为.
科目:初中数学 来源: 题型:
【题目】某校根据学校实际,决定开设:篮球、:乒乓球、:声乐、:健美操四种活动项目(必选且只能选一个),为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果整理后会制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:
(1)求这次被调查的学生共有多少人;
(2)通过计算补全条形统计图;
(3)已知该校有学生1600人,请根据调查结果估计该校最喜欢乒乓球的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连结CE, BE,则的最大值是( )
A. 4 B. 5 C. 6 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于点A、B两点,且与反比例函数y=的图象在第一象限内的部分交于点C,CD垂直于x轴于点D,其中OA=OB=OD=2.
(1)直接写出点A、C的坐标;
(2)求这两个函数的表达式;
(3)若点P在y轴上,且S△ACP=14,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边的顶点,,规定把“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边的顶点的坐标为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图像分别交x、y轴于点A、B,抛物线经过点A、B,点P为第四象限内抛物线上的一个动点.
(1)求此抛物线对应的函数表达式;
(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;
(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒).
【1】设△BPQ的面积为S,求S与t之间的函数关系式
【2】当线段PQ与线段AB相交于点O,且2AO=OB时,求t的值.
【3】当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
【4】是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com