【题目】如图,在平面直角坐标系中,一次函数的图像分别交x、y轴于点A、B,抛物线经过点A、B,点P为第四象限内抛物线上的一个动点.
(1)求此抛物线对应的函数表达式;
(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;
(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.
【答案】(1)抛物线对应的函数表达式为;(2)P的坐标为或;(3)点P的横坐标为3或.
【解析】
(1)先利用一次函数求出A,B两点的坐标,然后用待定系数法即可求出抛物线的表达式;
(2)分两种情况:若,则;若,则,分情况进行讨论即可;
(3)分两种情况,和,分情况进行讨论即可.
(1)令 时,,
∴ ,
令 时,,解得,
∴ ,
将点A,B代入中得
解得
∴抛物线对应的函数表达式为.
(2)设 ,
若,则 ,
此时P点的纵坐标与B点的纵坐标相同,
∴,
解得(舍去)或,
∴,
若,则 ,作PQ⊥OB于点Q,
,
,
,
,
∵,,
∴ , ,
即,
解得(舍去)或
∴
综上所述,P的坐标为或.
(3)若,过点B作BC∥OA交PQ于点C,过点P作PD⊥OB于点D
∵BC∥OA
∴
设
∴
解得(舍去)或
∴
若,如图,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,过O作OF⊥AB于F,连接AP,则∠BPQ=∠OEF,
设点,则,
,
,
,
,
则有,
,
,
,
即,
,
,
化简得:,即,
解得:(舍去),.
综上,存在点P,使得△PBQ中有某个角的度数等于∠OAB度数的2倍时,其P点的横坐标为3或.
科目:初中数学 来源: 题型:
【题目】在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩单位:个分别为:24,20,19,20,22,23,20,则这组数据中的众数和中位数分别是
A. 22个、20个 B. 22个、21个 C. 20个、21个 D. 20个、22个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F分别是正方形ABCD的边BC、CD的中点,连接AF、DE交于点P,过B作BG∥DE交AD于G,BG与AF交于点M.对于下列结论:①AF⊥DE;②G是AD的中点;③∠GBP=∠BPE;④S△AGM:S△DEC=1:4.正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,和均为等边三角形,直线和直线交于点.
填空:①的度数是 ;
②线段,之间的数量关系为 .
(2)类比探究
如图2,和均为等腰直角三角形,,,,直线和直线交于点.请判断的度数及线段,之间的数量关系,并说明理由.
(3)解决问题
如图3,在平面直角坐标系中,点坐标为,点为轴上任意一点,连接,将绕点逆时针旋转至,连接,请直接写出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了进一步了解某校九年级1000名学生的身体素质情况,体育老师对该校九年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | 12 |
第4组 | 140≤x<160 | a |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若在一分钟内跳绳次数少于120次的为测试不合格,试估计该年级学生不合格的人数大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D是⊙O上一点,点E时的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.
(1)求证:AB=BC;
(2)如果AB=10.tan∠FAC=,求FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果一个直角三角形的两条直角边的比为,那么这个三角形叫做“半正切三角形”.
(1)如图①,正方形网格中,已知格点,,在格点,,,中,与,能构成“半正切三角形”的是点__________;
(2)如图②,为“半正切三角形”,点在斜边上,点在边上,将射线绕点逆时针旋转,所得射线交边于点,连接.
①小彤发现:若为斜边的中点,则一定为“半正切三角形”.请判断“小彤发现”是否正确?并说明理由;
②连接,当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,BC=AC,以BC为直径的⊙O与边AB、AC分别交于点D、E,DF⊥AC于点F.
(1)求证:点D是AB的中点;
(2)判断DF与⊙O的位置关系,并证明你的结论;
(3)若⊙O的半径为10,sinB=,求阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经营一种商品,进价是每千克30元,根据市场调查发现,每日的销售量(千克)与售价(元/千克)满足一次函数关系.下表记录的是某两日的有关数据:
(元/千克) | 35 | 40 |
(千克) | 850 | 800 |
(1)求与的函数关系式(不求自变量的取值范围);
(2)在销售过程中销售单价不低于成本价,且不高于80元,某日该商场出售这种商品获得了14000元的利润,求该商品的售价?
(3)若某日该商场这种商品的销售量不少于500千克,求这一天该商场销售这种商品获得的最大利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com