【题目】如图,在ABC中,AB=AC=10,E,D分别是AB,AC上的点,BE=4,CD=2,且BD=CE,则BD=________________.
【答案】
【解析】
分别过点E,A,D作BC的垂线,垂足分别为M,H,C,分别证△BME∽△BHA,△EBM∽△DCN,由相似的性质推出CNBM及EM与AH之间的数量关系.设BM=2a,DN=x,通过勾股定理求出a与x的值,再在Rt△BDN中,通过勾股定理即可求出BD的值.
如图,分别过点E,A,D作BC的垂线,垂足分别为M,H,N,则EM∥AH∥DN,BH=CH,∴△BME∽△BHA,∴,∴设BM=2a,则BH=5a,BC=10a,∴MH=3a.
∵AB=AC,∴∠ABC=∠ACB.
又∵∠EMB=∠DNC=90°,∴△EBM∽△DCN,∴2,∴CNBM=a.设DN=x,则EM=2x.
在Rt△EMC与Rt△DNB中,MC=8a,BN=9a,EM2+MC2=EC2,DN2+BN2=BD2.
∵BD=CE,∴EM2+MC2=DN2+BN2,即(2x)2+(8a)2=x2+(9a)2,化简得:x2a2.
在Rt△DNC中,DN2+CN2=CD2,∴x2+a2=22,∴a2+a2=4,化简得:a2,∴x2.
在Rt△BDN中,BD.
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知,如图,数轴上有A、B两点.
(1)线段AB的中点表示的数是 ;
(2)线段AB的长度是 ;
(3)若A、B两点问时向右运动,A点速度是每秒3个单位长度,B点速度是每秒2个单位长度,问经过几秒时AB=2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是
A. 四边形CEDF是平行四边形
B. 当时,四边形CEDF是矩形
C. 当时,四边形CEDF是菱形
D. 当时,四边形CEDF是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F。
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内,二次函数与一次函数(a,b为常数,且).
(1)若y1,y2的图象都经过点(2,3),求y1,y2的表达式;
(2)当y2经过点时,y1也过A,B两点:
①求m的值;
②分别在y1,y2的图象上,实数t使得“当或时,”,试求t的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=5,E是BC边上的一个动点,DF⊥AE,垂足为点F,连结CF
(1)若AE=BC
①求证:△ABE≌△DFA;②求四边形CDFE的周长;③求tan∠FCE的值;
(2)探究:当BE为何值时,△CDF是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E | F |
上学方式 | 电动车 | 私家车 | 公共交通 | 自行车 | 步行 | 其他 |
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.
(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.
(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,O是CD的中点,延长AO交BC的延长线于点E,且BC=CE.
(1)求证:△AOD≌△EOC;
(2)若∠BAE=90°,AB=6,OE=4,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com