精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AC=10ED分别是ABAC上的点,BE=4CD=2,且BD=CE,则BD=________________

【答案】

【解析】

分别过点EADBC的垂线,垂足分别为MHC,分别证△BME∽△BHA,△EBM∽△DCN,由相似的性质推出CNBMEMAH之间的数量关系.设BM=2aDN=x,通过勾股定理求出ax的值,再在RtBDN中,通过勾股定理即可求出BD的值.

如图,分别过点EADBC的垂线,垂足分别为MHN,则EMAHDNBH=CH,∴△BME∽△BHA,∴,∴设BM=2a,则BH=5aBC=10a,∴MH=3a

AB=AC,∴∠ABC=ACB

又∵∠EMB=DNC=90°,∴△EBM∽△DCN,∴2,∴CNBM=a.设DN=x,则EM=2x

RtEMCRtDNB中,MC=8aBN=9aEM2+MC2=EC2DN2+BN2=BD2

BD=CE,∴EM2+MC2=DN2+BN2,即(2x2+8a2=x2+9a2,化简得:x2a2

RtDNC中,DN2+CN2=CD2,∴x2+a2=22,∴a2+a2=4,化简得:a2,∴x2

RtBDN中,BD

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,数轴上有AB两点.

1)线段AB的中点表示的数是   

2)线段AB的长度是   

3)若AB两点问时向右运动,A点速度是每秒3个单位长度,B点速度是每秒2个单位长度,问经过几秒时AB2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CEDF,下列说法不正确的是  

A. 四边形CEDF是平行四边形

B. 时,四边形CEDF是矩形

C. 时,四边形CEDF是菱形

D. 时,四边形CEDF是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)某学校智慧方园数学社团遇到这样一个题目:

如图1,在ABC中,点O在线段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的长.

经过社团成员讨论发现,过点BBDAC,交AO的延长线于点D,通过构造ABD就可以解决问题(如图2).

请回答:∠ADB=   °,AB=   

(2)请参考以上解决思路,解决问题:

如图3,在四边形ABCD中,对角线ACBD相交于点O,ACAD,AO=ABC=ACB=75°,BO:OD=1:3,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCO的面积为15,边OAOC2EBC的中点,以OE为直径的⊙O′轴于D点,过点DDF⊥AE于点F

1)求OAOC的长;

2)求证:DF⊙O′的切线;

3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′。你同意他的看法吗?请充分说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系内,二次函数与一次函数ab为常数,且).

1)若y1y2的图象都经过点(23),求y1y2的表达式;

2)当y2经过点时,y1也过AB两点:

m的值;

分别在y1y2的图象上,实数t使得时,”,试求t的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BC5EBC边上的一个动点,DFAE,垂足为点F,连结CF

1)若AEBC

①求证:ABE≌△DFA;②求四边形CDFE的周长;③求tanFCE的值;

2)探究:当BE为何值时,CDF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

F

上学方式

电动车

私家车

公共交通

自行车

步行

其他

某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图

根据以上信息,回答下列问题:

(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.

(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.

(3)若将ACDE这四类上学方式视为绿色出行,请估计该校每天绿色出行的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCOCD的中点,延长AOBC的延长线于点E,且BCCE

1)求证:△AOD≌△EOC

2)若∠BAE90°,AB6OE4,求AD的长.

查看答案和解析>>

同步练习册答案