精英家教网 > 初中数学 > 题目详情

在△ABC中,P是BC边上的一个动点,以AP为直径的⊙O分别交AB、AC于点E和点F.

(1)若∠BAC=45°,EF=4,则AP的长为多少?
(2)在(1)条件下,求阴影部分面积.
(3)试探究:当点P在何处时,EF最短?请直接写出你所发现的结论,不必证明.

(1)直径AP=2OE=(2)S阴影=S扇形EOF-SEOF(3)当AP⊥BC时,EF最短

解析试题分析:解:(1)连接OE、OF,则OE=OF
∵∠EOF=2∠EAF,而∠EAF=∠BAC=45°
∴∠EOF=90°
∴△EOF是等腰直角三角形
在Rt△EOF中
∴OE=OF=
∴直径AP=2OE=
(2)S阴影=S扇形EOF-SEOF

(3)在Rt△AEP中,根据垂径定理和勾股定理知,当AP取最小值时,EF的值最小;又根据点到直线的距离垂线段最短垂线段最短知当AP⊥BC时,AP最短.所以当AP⊥BC时,EF最短.
考点:圆和三角形勾股定理
点评:本题难度中等,主要考查学生对圆与三角形知识点的掌握与学习。做这类题型学生要注意培养数形结合的思维运用到考试中去。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD得周长为13cm,则△ABC的周长是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AD是中线,G是重心,
AB
=
a
AD
=
b
,那么
BG
=
 
.(用
a
b
表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

11、在△ABC中,D是边AB上一点,∠ACD=∠B,AB=9,AD=4,那么AC的长为
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD是BC边上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,则∠C=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.
探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC={90°}+
1
2
∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(2)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)
(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)

查看答案和解析>>

同步练习册答案