精英家教网 > 初中数学 > 题目详情

【题目】函数f(x)= +a(x﹣1)﹣2.
(1)当a=0时,求函数f(x)的极值;
(2)若对任意x∈(0,1)∪(1,+∞),不等式 恒成立,求实数a的取值范围.

【答案】
(1)解:当a=0时,f(x)= ﹣2.x>0,

∴f′(x)=

令f′(x)=0,解得x=

当f′(x)>0时,即0<x< ,函数单调递增,

当f′(x)<0时,即x> ,函数单调递减,

∴当x= 时,函数f(x)有极大值,极大值为f( )=e﹣2,无极小值;


(2)解:原不等式等价于 + >0,即 >0,

[lnx+a(x2﹣1)﹣2(x﹣1)]>0,

令g(x)=lnx+a(x2﹣1)﹣2(x﹣1),g(1)=0,

∴g′(x)= +2ax﹣2=

[lnx+a(x2﹣1)﹣2(x﹣1)]>0,

g(2)=ln2+3a﹣2>0a> >0,

①当a≥ 时,2ax2﹣2x+1≥x2﹣2x+1≥(x﹣1)2>0,

∴g′(x)>0,

∴g(x)在(0,+∞)上单调递增,

∴x∈(0,1),g(x)<0,x∈(1,+∞),g(x)>0,

g(x)>0,

②当0<a< 时,令2ax2﹣2x+1=0,解得x= >1,

∴x∈(1, )时,g′(x)<0,函数g(x)单调递减,

∴g(x)<g(1)=0,

g(x)<0,不合题意,舍去,

综上所述a≥


【解析】(1)先求导,根据导数和函数的极值的关系即可求出,(2)原不等式等价于 + >0,即 >0,构造函数g(x)=lnx+a(x2﹣1)﹣2(x﹣1),根据导数和函数的最值得关系,分类讨论即可证明
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E为AD的中点,异面直线AP与CD所成的角为90°.
(Ⅰ)证明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求二面角A﹣PE﹣C的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程 (α为参数) (Ⅰ)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标 ,判断点P与直线l的位置关系;
(Ⅱ)设点Q为曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数列{an} 满足a1= ,a2= ,an+2﹣an+1=(﹣1)n+1(an+1﹣an)(n∈N*),数列{an}的前n项和为Sn , 则S2017=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为(  )
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则关于点D的说法正确的是( )
甲:点D在第一象限
乙:点D与点A关于原点对称
丙:点D的坐标是(﹣2,1)
丁:点D与原点距离是
A.甲乙
B.丙丁
C.甲丁
D.乙丙

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.

(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率.

查看答案和解析>>

同步练习册答案