精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,且AB=3,AD=2,经过点C的直线y=x-2与x轴、y轴分别交于点E、F.
(1)求矩形ABCD的顶点A、B、C、D的坐标;
(2)求证:△OEF≌△BEC;
(3)P为直线y=x-2上一点,若S△POE=5,求点P的坐标.

解:(1)∵AD=BC=2,
故可设点C的坐标为(m,2),
又∵点C在直线y=x-2上,
∴2=m-2,
解得:m=4,即点C的坐标为(4,2),
∵四边形ABCD是矩形,
∴AB=CD=3,AD=BC=2,
故可得点A、B、D的坐标分别为(1,0)、(4,0)、(1,2).
(2)直线y=x-2与x轴、y轴坐标分别为E (2,0)、F (0,-2),
∴OF=OE=BC=BE=2,
在RT△OEF和RT△BEC中,
故可得△OEF≌△BEC.
(3)设点P的坐标为(xp,yp),则S△POE=×OE×|yp|=×2×|yp|=5,
解得:yp=±5,
①当yp=5时,xp=7;②当yp=-5时,xp=-3,
故点P的坐标为(7,5)或(-3,-5).
分析:(1)根据题意可得点C的纵坐标为2,代入函数解析式可得出点C的坐标,结合矩形的性质可得出A、B、D的坐标;
(2)先求出OE、OF的长度,从而利用SAS证明△OEF≌△BEC即可.
(3)设点P的坐标为(xp,yp),则可表示出S△POE=×OE×|yp|,解出xp的值讨论即可.
点评:此题综合考查了一次函数和矩形的性质,要求我们能将线段长度和点的坐标进行互相转化,在第三问的求解中,要先设出点P的坐标,根据面积关系进行求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案