精英家教网 > 初中数学 > 题目详情

【题目】如图1.直线AD∥EF,点BC分别在EFAD上,∠A=∠ABCBD平分∠CBF

1)求证:AB⊥BD

2)如图2BG⊥AD于点G,求证:∠ACB=2∠ABG

3)在(2)的条件下,如图3CH平分∠ACBBG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)

【答案】1)见解析;(2)见解析;(3)∠BHC=90°+∠α.

【解析】

1)根据平行线的性质以及角平分线的定义,即可得到ABBD

2)根据BGADADEF,可得∠FBG=AGB=90°,进而可得∠ABG=DBF,根据EFAD,即可得到∠ACB=CBF=2DBF=2ABG

3)根据平行线的性质以及角平分线的定义可得∠ABG=D=∠α,再根据∠HGC=90°即可得到∠BHC=HGC+ACH=90°+∠α.

解:(1)∵ADEF,

∴∠ABE=A=ABC,

又∵BD平分∠CBF,

∴∠CBD=FBD,

∴∠ABD=(∠CBE+CBF=×180°=90°,

ABBD;

2)∵BG⊥AG,

∴∠FBG=AGB=90°,

∵∠ABD=90°,

∴∠ABG=DBF,

EFAD,

∴∠ACB=CBF=2DBF=2ABG

3)∵ ADEF,

∴∠D=DBF,

∴∠ACB=2DBF=2D,

∴∠D=ACB,

CH平分∠ACB,

∴∠ACH=∠ACB,

∴∠ACH=D,

∵∠ABG=D=α,

∴∠ACH=α,

BGGC,

∴∠HGC=90°,

∴∠BHC=HGC+ACH=90°+∠α.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)探究发现

数学活动课上,小明说“若直线向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”

经过一番讨论,小组成员展示了他们的解答过程:

在直线上任取点

向左平移3个单位得到点

设向左平移3个单位后所得直线所对应的函数表达式为

因为过点

所以

所以

填空:所以平移后所得直线所对应函数表达式为

2)类比运用

已知直线,求它关于轴对称的直线所对应的函数表达式;

3)拓展运用

将直线绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD,AB=6,DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF.以下结论:①∠BAF=BCF; ②点EAB的距离是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正确的有()

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字123.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.

1)求甲摸到标有数字3的球的概率;

2)这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】珠海市水务局对某小区居民生活用水情况进行了调査.随机抽取部分家庭进行统计,绘制成如下尚未完成的频数分布表和频率分布直方图.请根据图表,解答下列问题:

月均用水量(单位:吨

频数

频率

2≤x3

4

0.08

3≤x4

a

b

4≤x5

14

0.28

5≤x6

9

c

6≤x7

6

0.12

7≤x8

5

0.1

合计

d

1.00

1b= c= ,并补全频数分布直方图;

2)为鼓励节约用水用水,现要确定一个用水量标准P(单位:吨),超过这个标准的部分按1.5倍的价格收费,若要使60%的家庭水费支出不受影响,则这个用水量标准P= 吨;

3)根据该样本,请估计该小区400户家庭中月均用水量不少于5吨的家庭约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4x轴交于A40)、B﹣20)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点PPD∥AC,交BC于点D,连接CP

1)求该抛物线的解析式;

2)当动点P运动到何处时,BP2=BDBC

3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,点在边上(点与点不重合),过点与边相交于点,与边的延长线相交于点

1有什么样的数量关系?请直接写出你的结论:____________________

2的数量之间具有怎样的关系?并证明你所得到的结论.

3)如果正方形的边长是1,直接写出点到直线的距离.

解:(1的数量关系:____________________

2的数量之间的关系是 .

证明:

3)点到直线的距离是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

【答案】1见解析;2

【解析】试题分析:(1) 先证明DOP≌△EOH再利用等量代换得到PE=DH.

(2) DP=x RtBCH中,先用 x表示三角形三边,利用勾股定理列式解方程.

试题解析:

1)解:证明:OD=OED=∠E=90°DOP=∠EOH

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD

PE=DH.

2)解:设DP=x,则EH=xBH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
束】
25

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第nk边形数N(nk)=n2n(n≥1,k≥3,kn都为整数),

如第1个三角形数N(1,3)=×12×1=1;

2个三角形数N(2,3)=×22×2=3;

3个四边形数N(3,4)=×32×3=9;

4个四边形数N(4,4)=×42×4=16.

(1)N(5,3)=________,N(6,5)=________;

(2)N(m,6)N(m+2,4)10,求m的值;

(3)若记yN(6,t)-N(t,5),试求出y的最大值.

查看答案和解析>>

同步练习册答案