精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的面积为12cm2,以顶点A为圆心,适当长为半径画弧,分别交ACAB于点MN,再分别以点MN为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点CCDAP于点D,连接DB,则△DAB的面积是_____cm2

【答案】6

【解析】

延长CDABE,依据△ACD≌△AED,即可得到CDED,进而得到SBCDSBEDSACDSAED,据此可得SABDSAEDSBEDSABC

解:如图所示,延长CDABE

由题可得,AP平分BAC

∴∠CADEAD

CDAP

∴∠ADCADE90°

ADAD

∴△ACD≌△AEDASA),

CDED

SBCDSBEDSACDSAED

SABDSAED+SBEDSABC×126cm2),

故答案为:6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.

(1)求抛物线的函数解析式;

(2)P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,CPQ的面积为S.

①求S关于m的函数表达式;

②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为4EAB的中点,FAD上一点,且AF=AD,试判断△EFC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的实数),其中正确结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+cx轴交于点A(-3,0)、B(1,0),C为顶点,直线y=x+m经过点A,与y轴交于点D.

(1)b、c的值;

(2)∠DAO的度数和线段AD的长;

(3)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′,若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC中,ABAC4,∠BAC100°,点D是底边BC的动点(点D不与BC重合),连接AD,作∠ADE40°,DEAC交于点E

1)当DC等于多少时,△ABD与△DCE全等?请说明理由;

2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA的度数;若不可以,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是二次函数的部分的对应值:

x

-1

0

1

2

3

y

m

-1

-2

-1

2

(1)求函数解析式;

(2)时,y的取值范围是___________;

(3)当抛物线的顶点在直线的下方时,n的取值范围是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABD△ACE中,有下列四个等式:①AB=AC②AD=AE③∠1=∠2④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.

已知:

求证:

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点都在方格纸的格点上,方格纸中每个小正方形的边长都是1

1)画关于直线对称的

2)在直线上找一点,使最小;(要求在直线上标出点的位置)

3)连接,计算四边形PABC的面积.

查看答案和解析>>

同步练习册答案