精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,,求证:.

证明:∵

________________(同旁内角互补,两直线平行),

=________(两直线平行,内错角相等),

又∵(已知),

________________(内错角相等,两直线平行),

=________(两直线平行,内错角相等),

-=________________,

.

【答案】见解析.

【解析】分析:根据平行线的性质和判定填空.

详解:∵∠BAE+∠AED=180°

ABCD(同旁内角互补,两直线平行)

∴∠BAEAEC(两直线平行,内错角相等)

又∵∠M=∠N(已知)

ANME(内错角相等,两直线平行)

∴∠NAEMEA(两直线平行,内错角相等)

∴∠BAE-∠NAEAEC-∠MEA

即∠1=∠2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】按图填空,并注明理由.

⑴完成正确的证明:如图,已知AB∥CD,求证:∠BED=∠B+∠D

证明:过E点作EF∥AB(经过直线外一点有且只有一条直线与这条直线平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代换).

⑵如图,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.

解:因为EF∥AD(已知)

所以∠2=∠3.( )

又因为∠1=∠2,所以∠1=∠3.(等量代换)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因为∠BAC=70°,所以∠AGD=110°.

图⑴ 图⑵

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,
(1)求∠ABD的度数.
(2)若∠CDB=30°,BC=3,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:

(1)(9x3y12xy33xy2)÷(3xy)(2yx)(2yx),其中x1y=-2

(2)(mn)(mn)(mn)22m2,其中mn满足方程组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段的中点坐标为

(1)如图(1),C为线段AB中点,A点坐标为(0,4),B点坐标为(5,4),则点C的坐标为   

(2)如图(2),F为线段DE中点,D点坐标为(﹣4,﹣3),E点坐标为(1,﹣3).则点F的坐标为________

应用:

(1)如图(3),长方形ONDF的对角线相交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点D的坐标为(4,3),则点M的坐标为   

(2)在直角坐标系中A(﹣1,2),B(3,1),C(1,4)三点,另有一点DA,B,C构成平行四边形的顶点,直接写出D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块直角三角板DEF放置在ABC上,三角板DEF的两条直角边DEDF恰好分别经过点BCABC中,∠A=50°,求∠DBA+DCA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD,

求:(1)在图(1)中∠B+D=?(2)在图(2)中∠B+E1+D=?(3)在图(3)中∠B+E1+E2+…+En1+En+D=?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,5) A1(2,5) A2(4,5) A3(8,5) B(2,0) B1(4,0) B2(8,0) B3(16,0):若按此规律,将△OAB进行n次变换,得到△OAnBn。推测An的坐标是___________Bn的坐标是___________。( )

A. (2n,5)(2n+1,0) B. (2n-1,5)(2n+1,0) C. (2n,5)(2n,0) D. (2n+1,5)(2n+1,0)

查看答案和解析>>

同步练习册答案