精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.
(1)试说明∠BCD=∠ECD;
(2)请找出图中所有与∠B相等的角(直接写出结果).

解:(1)∵∠B=70°,CD⊥AB于D,
∴∠BCD=90°-70°=20°,
在△ABC中,∵∠A=30°,∠B=70°,
∴∠ACB=180°-30°-70°=80°,
∵CE平分∠ACB,
∴∠BCE=∠ACB=40°,
∴∠ECD=∠BCE-∠BCD=40°-20°=20°,
∴∠BCD=∠ECD;

(2)∵CD⊥AB于D,DF⊥CE于F,
∴∠CED=90°-∠ECD=90°-20°=70°,
∠CDF=90°-∠ECD=90°-20°=70°,
所以,与∠B相等的角有:∠CED和∠CDF.
分析:(1)根据直角三角形的两锐角互余求出∠BCD的度数,再利用三角形的内角和定理求出∠ACB,然后根据角平分线的定义求出∠BCE,从而可以求出∠ECD的度数,即可得解;
(2)根据三角形的角度关系,找出度数是70°的角即可.
点评:本题主要考查了三角形的高线的定义,角平分线的定义,三角形的内角和定理,根据求出的角的度数相等得到相等关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案