分析 (1)令y=0得到关于x的方程,找出相应的a,b及c的值,表示出b2-4ac,整理配方后,根据完全平方式大于等于0,判断出b2-4ac大于等于0,可得出抛物线与x轴总有交点,得证;
(2)由抛物线与y轴交于(0,3),将x=0,y=3代入抛物线解析式,求出m的值,进而确定出抛物线解析式,配方后找出顶点坐标,根据确定出的解析式列出相应的表格,由表格得出7个点的坐标,在平面直角坐标系中描出7个点,然后用平滑的曲线作出抛物线的图象,如图所示;
(3)由图象可得出不等式-x2+(m-1)x+m>3的解集.
解答 (1)证明:令y=0,得到-x2+(m-1)x+m=0,
∵a=-1,b=m-1,c=m,
∴b2-4ac=(m-1)2+4m=(m+1)2,
又(m+1)2≥0,即b2-4ac≥0,
∴方程y=-x2+(m-1)x+m有实数根,
则该函数图象与x轴总有公共点;
(2)解:∵该函数的图象与y轴交于点(0,3),
∴把x=0,y=3代入解析式得:m=3,
∴y=-x2+2x+3=-(x-1)2+4,
∴顶点坐标为(1,4);
列表如下:
| x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| y | -5 | 0 | 3 | 4 | 3 | 0 | -5 |
点评 此题考查了抛物线与x轴的交点,利用待定系数法确定函数解析式,函数图象的画法,以及二次函数的图象与性质,是一道综合性较强的试题.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com